答案
知识点巩固练习(一) 一、选择题 1.C
b?tan300,b?atan300?23,c?2b?44,c?b?23 a2.A 0?A??,sinA?0 3.C cosA?sin(4.D 作出图形
5.D b?2asinB,sinB?2sinAsinB,sinA??2?A)?sinB,?2?A,B都是锐角,则
?2?A?B,A?B??2,C??2
1,A?300或1500 252?82?721?,??600,1800?600?1200为所求 6.B 设中间角为?,则cos??2?5?82二、填空题 1.
111 sinAsinB?sinAcosA?sin2A? 2220b2?c2?a21??,A?1200 2.120 cosA?2bc23.6?2 A?150,abbsinA6?2?,a??4sinA?4sin150?4? sinAsinBsinB404. 120 a∶b∶c?sinA∶sinB∶sinC?7∶8∶13,
a2?b2?c21??,C?1200 令a?7k,b?8k,c?13k cosC?2ab2三、解答题
1. 解:acosA?bcosB?ccosC,sinAcosA?sinBcosB?sinCcosC
sin2A?sin2B?sin2C,2sin(A?B)cos(A?B)?2sinCcosC cos(A?B)??cos(A?B),2cosAcosB?0
cosA?0或cosB?0,得A?所以△ABC是直角三角形。
?2或B??2
a2?c2?b2b2?c2?a22. 证明:将cosB?,cosA?代入右边
2ac2bca2?c2?b2b2?c2?a22a2?2b2?)? 得右边?c(
2abc2abc2aba2?b2ab????左边,
abba ∴
abcosBcosA??c(?) baba3.证明:∵△ABC是锐角三角形,∴A?B? ∴sinA?sin(?2,即
?2?A??2?B?0
?B),即sinA?cosB;同理sinB?cosC;sinC?cosA
2∴sinA?sinB?sinC?cosA?cosB?cosC
?
知识点巩固练习(二) 一、选择题 1.C A??6,B??3,C??2,a:b:c?sinA:sinB:sinC?132::?1:3:2 2222.A A?B??,A???B,且A,??B都是锐角,sinA?sin(??B)?sinB 3.D sinA?sin2B?2sinBcosB,a?2bcosB 4.D lgsinAsinA?lg2,?2,sinA?2cosBsinC
cosBsinCcosBsinCsin(B?C)?2cosBsinC,sinBcosC?cosBsinC?0, sin(B?C)?0,B?C,等腰三角形
5.B (a?b?c)(b?c?a)?3bc,(b?c)?a?3bc,
22b2?c2?a21?,A?600 b?c?a?3bc,cosA?2bc22226.C c?a?b?2abcosC?9,c?3,B为最大角,cosB??二、填空题 1.
2221 7239113?3,c?4,a2?13,a?13 S?ABC?bcsinA?c?3222
a?b?ca13239 ???sinA?sinB?sinCsinA332sin(?B)???22.? A?B?,A??B,即tanA?tan(?B)?
?222cos(?B)2cosB11,tanA???,tanAtanB?1
sinBtanBtanBsinBsinC3. 2 tanB?tanC? ?cosBcosCsinBcosC?cosB?sinCsin(B?C)2sinA ? ??1cosBcosCsinAsinA24. 锐角三角形 C为最大角,cosC?0,C为锐角
?8?43?3b?c?a3?1104??? 5. 60 cosA?2bc6?22?2?(3?1)222?22222?三、解答题 1.解:S?ABC?221bcsinA?3,bc?4, 22 a?b?c?2bccosA,b?c?5,而c?b
所以b?1,c?4
2. 证明:∵△ABC是锐角三角形,∴A?B? ∴sinA?sin(?2,即
?2?A??2?B?0
?2?B),即sinA?cosB;同理sinB?cosC;sinC?cosA
sinAsinBsinC?1
cosAcosBcosC∴sinAsinBsinC?cosAcosBcosC,∴tanA?tanB?tanC?1
A?BA?Bcos?sin(A?B) 22A?BA?BA?BA?B ?2sin cos?2sincos2222A?BA?BA?B(cos?cos) ?2sin222CAB ?2cos?2coscos
222ABC ?4coscoscos
222ABC∴sinA?sinB?sinC?4coscoscos
2223. 证明:∵sinA?sinB?sinC?2sina2?ac?b2?bcab?1, 4.证明:要证??1,只要证2ab?bc?ac?cb?ca?c即a?b?c?ab
0而∵A?B?120,∴C?60
0222a2?b2?c22cosC?,a?b2?c2?2abcos600?ab
2ab∴原式成立。
CA3b ?ccos2?2221?cosC1?cosA3sinB ∴sinA? ?sinC??222 即sinA?sinAcosC?sinC?sinCcosA?3sinB
5.证明:∵acos2 ∴sinA?sinC?sin(A?C)?3sinB 即sinA?sinC?2sinB,∴a?c?2b
知识点巩固练习(三)
一、选择题
1.C sinA?cosA?2sin(A?),
4?而0?A??,2.B
?4?A??4?5?2????sin(A?)?1 424a?bsinA?sinB??sinA?sinB csinCA?BA?BA?B ?2sin cos?2cos2221103.D cosA?,A?60,SVABC?bcsinA?63 2204.D A?B?90则sinA?cosB,sinB?cosA,0?A?45,
0000 sinA?cosA,45?B?90,sinB?cosB
5.C a?c?b?bc,b?c?a??bc,cosA??,A?120
222222120sinAcosBsin2AcosBsinA??,?,sinAcosA?sinBcosB 6.B 2cosAsinBsinBcosAsinB sin2A?sin2B,2A?2B或2A?2B?? 二、填空题