高三数学单元测试卷(18套)答案 下载本文

OC是AC在面OBCO1内的射影.

O1C3, 因为tan?OOB?OB?3 tan?OOC??11OO13OO1 所以∠OO1B=60°,∠O1OC=30°,从而OC⊥BO1

由三垂线定理得AC⊥BO1.

(II)解 由(I)AC⊥BO1,OC⊥BO1,知BO1⊥平面AOC. 设OC∩O1B=E,过点E作EF⊥AC于F,连结O1F(如图4),则EF是O1F在平面AOC 内的射影,由三垂线定理得O1F⊥AC. 所以∠O1FE是二面角O—AC—O1的平面角.

由题设知OA=3,OO1=3,O1C=1, 所以O1A?从而O1F?OA2?OO12?23,AC?O1A2?O1C2?13,

O1A?O1C23, ?AC13又O1E=OO12sin30°=

3, 2

所以sin?O1FE?O1E313. ?. 即二面角O—AC—O1的大小是arcsin4O1F418.解:以A为原点,AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间1

直角坐标系,则A(0,0,0),B(1,0,0),C(12,0,),D(0,2,0),E(0,1,),P(0,0,1).

2

????????????????????1

∴CD=(-1,0,0),AD=(0,2,0),AP=(0,0,1),AE=(0,1,) ,PC=(1,2,-1),

2

?????????CD?AD?0?CD?AD??????????CD?平面PAD?(1) CD?AP?0?CD?AP?平面PAD.??5分 ????平面PDC⊥

CD?平面PDC?AP?AD?A???1????????2-????????2AE?PC30

????????(2)∵cos?AE,PC??==,

101|AE|?|PC|1+26

4

30

∴所求角的余弦值为.????????????????????????9分

10

(3)假设BC边上存在一点G满足题设条件,令BG=x,则G(1,x,0),作DQ⊥AG,则

????????????????DQ⊥平面PAG,即DQ=1.∵2S△ADG=S矩形ABCD,∴|AG|?|DQ|?|AB|?|AD|=2∴????|AG|=2,又AG=x2+1,∴x=3<2,

故存在点G,当BG=3时,使点D到平面PAG的距离为1.??????????14分

19.解:⑴CC1∥BB1,又BB1⊥A1E,∴CC1⊥A1E,而CC1⊥A1F,∴CC1⊥平面A1EF,∴平面A1EF⊥平面B1BCC1????????????????????????4分

⑵作A1H⊥EF于H,则A1H⊥面B1BCC1,∴A1H为A1到面B1BCC1的距离,在△A1EF中,

A1E=A1F=2,EF=2,∴△A1EF为等腰Rt△且EF为斜边,∴A1H为斜边上中线,可1

得A1H=EF=1????????????????????????????9分

2⑶作A1G⊥面ABC于G,连AG,则A1G就是A1到面ABC的距离,且AG是∠BAC的角平分线,A1G=1????????????????????????????12分 cos45°631

∵cos∠A1AG==,∴sin∠A1AG=,∴A1A==1??????14分

3cos30°33

320.解:(Ⅰ)如图所示: C(2,0,0),S(0,0,1),O(0,0,0),B(1,1,0)

?SC?(2,0,?1),OB?(1,1,0)1010 ?cos?SC,OB???,??arccos555?22?????????????????????4分

(Ⅱ)①SB?(1,1,?1),CB?(?1,1,0)?n?SBC

??????????????n?SB,n?CB,?n?SB?1?p?q?0 ??????n?CB??1?p?0,解得:p?1,q?2,?n?(1,1,2)?????????????????????????????7分

②过O作OE?BC于E,则BC?面SOE,?SOE?SAB

又两面交于SE,过O作OH?SE于H,则OH?SBC,延长OA与CB交于F,则OF?2连FH,则?OFH为所求又OE?2,?SE?3

6SO?OE1?266?OH???,?sin??3?SE3263???arcsin6?????????????????10分6

③k的坐标为?1,?1,2?;OH?6 ??????????????14分. 321.以C为原点建立空间直角坐标系

(I)B(0,a,0),N(a,0,a),

∴|BN|?

(a?0)2?(0?a)2?(a?0)2?3a.4分

(II)A1(a,0,2a),C(0,0,0),B1(0,a,2a), ∴BA1=(a,-a,2a),CB1=(0,a,2a), ∴BACB1=a30+(-a)3a+2a32a=3a2,5分 1·

222a?(?a)?(2a)?|BA|=16a,|CB1|=02?a2?(2a)2?5a,7分

∴cos〈BA1,CB1〉=BA1?CB1|BA1|?|CB1|?36?5?30.9分 10aaaa,,2a),∴C1M=(,,0),A1B=(-a,a,2a), 2222aa∴A1B·C1M=(-a)3+a3+2a30=0,∴A1B⊥C1M,∴A1B⊥C1M.14分

22(III)C1(0,0,2a),M(

第十单元 空间向量及运算参考答案

一、选择题 题号 1 答案 D 二、填空题 5

11.65 12.(-4,2,-4) 13.[1,5] 14.3 15.

6

2 A 3 B 4 C 5 D 6 A 7 D 8 B 9 C 10 D 三、解答题

16.解:∵b1∥a,∴令b1=(λ,λ,0),b2=b-b1=(1-λ,1-λ,1),

又∵b2⊥a,∴a2b2=(1,1,0)2(1-λ,1-λ,1)=1-λ+1-λ=2-2λ=0, ∴λ=1,即b1=(1,1,0),b2=(0,0,1). 17.解:⑴过D作DE⊥BC于E,则DE=CD2sin30°=

1, 2

31,OE=OB-BDcos60°=1-=22

????3313

∴D的坐标为(0,-,),又∵C(0,1,0),∴CD?(0,?,)

2222?????33???31⑵依题设有A点坐标为A(,?1,),BC?(0,2,0) ,,0),∴AD?(?2222????????????????AD?BC10???????则cos?AD,BC?????.故异面直线AD与BC所成角的余弦值为

5|AD|?|BC|

10. 5

a?b2(a?b)2218.解:⑴∵|u|?|a?tb|?|a|?2(a?b)t?t|b|?|b|(t?, )?|a|?22|b||b|222222∴当t=?a?b时,|u|=|a+tb|最小. 2|b|22⑵∵b?(a?tb)?a?b?t|b|?a?b?|b|(?a?b)?0?b?(a?tb). |b|2????1????????????2????????19.解:∵BF?(BO?BC),OE?BA?BO,

23????21????2????2????????1????????7∴|BF|?(|BO|?|BC|?2BO?BC)?(4?1?2|BO||BC|cos60?)?,

444?????24????2????24????????????7???|BF|?;|OE|?|BA|?|BO|?BA?BO?4?4?4?4,|OE|?2.

293????????12????????????22????????????????13又BF?OE?(BA?BO?|BO|?BC?BA?BC?BO)?(2?4?1)??,

23322????????????????BF?OE?337??????∴cos?BF,OE?????, ??14|BF||OE|27故异面直线OE与BF所成的角的余弦值为37. 1420.解:⑴设BP=t,则CQ?2?(2?t)2,DQ?2?2?(2?t)2,

∴B1(2,0,2),D1(0,2,2),P(2,t,0),

?????????2Q(2?2?(2?t),2,0).QB1?(2?(2?t),?2,2),PD1?(?2,2?t,2)

2?????????又∵BQ?D1P?QB1?PD1?0, 122∴?22?(2?t)?2(2?t)?2?2?0,即2?(2?t)?t

解得t=1,即P、Q分别为中点时,B1Q⊥D1P.

⑵由⑴知PQ∥BD,且AC⊥PQ,设AC∩PQ=E,连C1E,∵CC1⊥底面BD,CE⊥PQ, ∴C1E⊥PQ,即∠CEC1为所求二面角O—PQ—C1的平面角,易得tan?CEC1?22.