二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上) 17.(3.00分)计算:
= .
18.(3.00分)若a,b互为相反数,则a2﹣b2= .
19.(6.00分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而
=45是360°(多边形外角和)的,这样就恰好可
作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.
图2中的图案外轮廓周长是 ;
在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .
三、解答题(本大题共7小题,共计66分) 20.(8.00分)嘉淇准备完成题目:刷不清楚. (1)他把“
”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);
发现系数“
”印
(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“
”是几?
21.(9.00分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.
第5页(共31页)
(1)求条形图中被遮盖的数,并写出册数的中位数;
(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;
(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.
22.(9.00分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等. 尝试 (1)求前4个台阶上数的和是多少? (2)求第5个台阶上的数x是多少? 应用 求从下到上前31个台阶上数的和.
发现 试用含k(k为正整数)的式子表示出数“1”所在的台阶数.
23.(9.00分)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α. (1)求证:△APM≌△BPN; (2)当MN=2BN时,求α的度数;
(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.
第6页(共31页)
24.(10.00分)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4). (1)求m的值及l2的解析式; (2)求S△AOC﹣S△BOC的值;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.
25.(10.00分)如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧
,使点B在O右下方,且tan∠AOB=,在优弧
上任取一点P,且
能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP. (1)若优弧
上一段
的长为13π,求∠AOP的度数及x的值;
所在圆的位置关系;
(2)求x的最小值,并指出此时直线l与
(3)若线段PQ的长为12.5,直接写出这时x的值.
26.(11.00分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米. (1)求k,并用t表示h;
第7页(共31页)
(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;
(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.
第8页(共31页)