2019年高考真题 - 数学(江苏卷)+Word版含答案 下载本文

2019年普通高等学校招生全国统一考试(江苏卷)

数学Ⅰ

注意事项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。本卷满分为160分,考试时间为120分钟。考试结束后,请将本试卷和答题卡一片交回。 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。 4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。 参考公式:

1n1n2样本数据x1,x2,…,xn的方差s???xi?x?,其中x??xi.

ni?1ni?12柱体的体积V?Sh,其中S是柱体的底面积,h是柱体的高. 锥体的体积V?1Sh,其中S是锥体的底面积,h是锥体的高. 3一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上. ..

1.已知集合A?{?1,0,1,6},B?{x|x?0,x?R},则AB? ▲ . 2.已知复数(a?2i)(1?i)的实部为0,其中i为虚数单位,则实数a的值是 ▲ . 3.下图是一个算法流程图,则输出的S的值是 ▲ . 4.函数y?7?6x?x2的定义域是 ▲ . 5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ . 6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .

y27.在平面直角坐标系xOy中,若双曲线x?2?1(b?0)经过点(3,4),则该双曲

b2 第 1 页 共 17 页

线的渐近线方程是 ▲ .

n?N8.已知数列{an}(*)是等差数列,Sn是其前n项和.若

a2a5?a8?0,S9?27,则S8的值是 ▲ .

9.如图,长方体ABCD?A1B1C1D1的体积是120,E为CC1的中点,

则三棱锥E-BCD的体积是 ▲ .

10.在平面直角坐标系xOy中,P是曲线y?x?4(x?0)上的一个动x点,则点P到直线x+y=0的距离的最小值是 ▲ .

11.在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,

-1)(e为自然对数的底数),则点A的坐标是 ▲ . 12.如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,

AD与CE交于点O.若AB?AC?6AO?EC,则是 ▲ . 13.已知

AB的值ACtan?2in则s??,

π?3?tan????4??π??2????的值是 ▲ .

4??14.设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且

?k(x?2),0?x?1?,f(x)是奇函数.当x?(0,2]时,f(x)?1?(x?1)2,g(x)??1?,1?x?2??2其中k>0.若在区间(0,9]上,关于x的方程f(x)?g(x)有8个不同的实数根,则k的取值范围是 ▲ .

二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字.......

说明、证明过程或演算步骤. 15.(本小题满分14分)

在△ABC中,角A,B,C的对边分别为a,b,c. (1)若a=3c,b=2,cosB=

2,求c的值; 3第 2 页 共 17 页

(2)若

sinAcosB??,求sin(B?)的值. a2b216.(本小题满分14分)

如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC. 求证:(1)A1B1∥平面DEC1; (2)BE⊥C1E.

17.(本小题满分14分)

x2y2如图,在平面直角坐标系xOy中,椭圆C:2?2?1(a?b?0)的焦点为

abF1(–1、0),

F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x?1)?y?4a交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1. 已知DF1=

2225. 2(1)求椭圆C的标准方程; (2)求点E的坐标.

18.(本小题满分16分)

如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆....O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米). (1)若道路PB与桥AB垂直,求道路PB的长; (2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;

(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.

第 3 页 共 17 页

19.(本小题满分16分)

设函数f(x)?(x?a)(x?b)(x?c),a,b,c?R、f'(x)为f(x)的导函数. (1)若a=b=c,f(4)=8,求a的值;

(2)若a≠b,b=c,且f(x)和f'(x)的零点均在集合{?3,1,3}中,求f(x)的极小值;

(3)若a?0,0?b?1,c?1,且f(x)的极大值为M,求证:M≤20.(本小满分16分)

定义首项为1且公比为正数的等比数列为“M-数列”.

(1)已知等比数列{an}(n?N)满足:a2a4?a5,a3?4a2?4a4?0,求证:数列{an}为“M-数列”;

(2)已知数列{bn}满足:b1?1,①求数列{bn}的通项公式;

②设m为正整数,若存在“M-数列”{cn}(n?N),对任意正整数k,当k≤m时,

**4. 27122??,其中Sn为数列{bn}的前n项和. Snbnbn?1bkck?1成立,求m的最大值. 都有ck剟

第 4 页 共 17 页