¸ßÖÐÊýѧ±ØÐÞÒ»µÚ¶þÕÂѧ°¸ ÏÂÔر¾ÎÄ

¿ÎÌ⣺¡ì2.1.1Ö¸Êý

Ò»¡¢ÒýÈë¿ÎÌâ

¸´Ï°³õÖÐÕûÊýÖ¸ÊýÃݵÄÔËËãÐÔÖÊ£º

am?an?am?n(am)n?amn(ab)n?anbn

³õÖиùʽµÄ¸ÅÄÈç¹ûÒ»¸öÊýµÄƽ·½µÈÓÚa£¬ÄÇôÕâ¸öÊý½Ð×öaµÄƽ·½¸ù£¬Èç¹ûÒ»¸öÊýµÄÁ¢·½µÈÓÚa£¬ÄÇôÕâ¸öÊý½Ð×öaµÄÁ¢·½¸ù£»

¶þ¡¢Ð¿νÌѧ

1£®¸ùʽµÄ¸ÅÄî

Ò»°ãµØ£¬Èç¹ûxn?a£¬ÄÇôx½Ð×öaµÄn´Î·½¸ù£¬ÆäÖÐn>1£¬ÇÒn¡ÊN*£® ÀýÈ磺 27µÄ3´Î·½¸ù= £¬

?27µÄ3´Î·½¸ù= £¬ 32µÄ5´Î·½¸ù £¬ ?32µÄ5´Î·½¸ù £® ˵Ã÷£º¢Ù ÈônÊÇÆæÊý£¬ÔòaµÄn´Î·½¸ù¼Ç×÷na£» Èôa?0Ôòna?0£¬Èôa?oÔòna?0£»

¢Ú ÈônÊÇżÊý£¬ÇÒa?0ÔòaµÄÕýµÄn´Î

·½¸ù¼Ç×÷na£¬aµÄ¸ºµÄn´Î·½¸ù£¬¼Ç×÷£º?na£»£¨ÀýÈ磺8µÄƽ·½¸ù

?8??22 16µÄ4´Î·½¸ù?416??2£©

¢Û ÈônÊÇżÊý£¬ÇÒa?0ÔònaûÒâÒ壬

¼´¸ºÊýûÓÐż´Î·½¸ù£»

¢Ü

?0n?0?n?1,n?N??

¡àn0?0£»

¢Ý ʽ×Óna½Ð¸ùʽ£¬n½Ð¸ùÖ¸Êý£¬a½Ð±»¿ª·½Êý¡£ ¡à

?na?n?a£®

Àý1£®ÇóÏÂÁи÷ʽµÄÖµ£º

£¨1£©3??83? £¨2£©

??10?2

£¨3£©4?3???4 £¨4£©

?a?b?2?a?b?

2£®a µÄ n´Î·½¸ùµÄÐÔÖÊ

Ò»°ãµØ£¬ÈônÊÇÆæÊý£¬Ôònan?a£» ÈônÊÇżÊý£¬Ôònan?a???aa?0??aa?0£® ˼¿¼£º£©nan=aÒ»¶¨³ÉÁ¢Â𣿣®

Àý2£®ÒÑÖªÒÑÖªa?b?0, n?1,n?N?£¬ »¯¼ò£º

n?a?b?n?n?a?b?n

½â£º µ± nÊÇÆæÊýʱ£¬Ô­Ê½

= £»

µ± nÊÇżÊýʱ£¬Ô­Ê½= ËùÒÔ£¬n?a?b?n?n?a?b?n= ¡£

3£®·ÖÊýÖ¸ÊýÃÝ£º

¹æ¶¨£º£¨1£©ÕýÊýµÄÕý·ÖÊýÖ¸ÊýÃݵÄÒâÒåÊÇ£º

man?nam?a?0,m,n?N?,n?1?

£¨2£©ÕýÊýµÄ¸º·ÖÊýÖ¸ÊýÃݵÄÒâÒåÊÇ£º

a?mn?1?m?1annam?a?0,m,n?N,n?1?

4£®·ÖÊýÖ¸ÊýÃݵÄÔËËãÐÔÖÊ£ºÕûÊýÖ¸ÊýÃݵÄÔËËãÐÔÖʶÔÓÚ·ÖÊýÖ¸ÊýÃÝҲͬÑùÊÊÓà ¼´ ?1?aras?ar?s?a?0,r,s?Q?

?2??ar?s?ars?a?0,r,s?Q? ?3??ab?r?arbr?a?0,b?0,r?Q?

˵Ã÷£º£¨1£©ÓÐÀíÊýÖ¸ÊýÃݵÄÔËËãÐÔÖʶÔÎÞÀíÊýÖ¸ÊýÃÝͬÑùÊÊÓã»

£¨2£©0µÄÕý·ÖÊýÖ¸ÊýÃݵÈÓÚ0£¬0µÄ¸º·ÖÊýÖ¸ÊýÃÝûÒâÒå¡£

21Àý3£®ÇóÖµ£º 83£¬ 100?2£¬

??1???3£¬ ??16??34?4??81??£® Àý4£® Ó÷ÖÊýÖ¸ÊýÃݵÄÐÎʽ±íʾÏÂÁи÷ʽ

?a?o?£ºa2?a£¬ a3?3a2£¬

aa.

Àý5£®¼ÆËãÏÂÁи÷ʽµÄÖµ£¨Ê½ÖÐ×Öĸ¶¼ÊÇÕýÊý£©£® £¨1£©

??????2ab?6ab??3ab??????231212131656£¨2£©64a2?12ab?9b2£»

?3b????a??

23????????8£¨2£©?1?m4n?38??

??

Àý6£®¼ÆËãÏÂÁи÷ʽ£º £¨1£©

?35?125??45 2£¨2£©aa3a2?a?0?

Èý¡¢Á·Ï°

1.Ó÷ÖÊýÖ¸ÊýÃݱíʾÏÂÁзÖʽ(ÆäÖи÷ʽ×Öĸ¾ùΪ

ÕýÊý)

(1)3a?4a £¨£²£©aaa

£¨£³£©3(a?b)2 £¨£´£©4(a?b)3

£¨£µ£©3ab2?a2b £¨6£©4(a3?b3)2

2£®ÏÂÁи÷ʽÖгÉÁ¢µÄÒ»ÏîÊÇ

1A

£®

(n)7?n7m7B

£®

33m

9?3

3C£®4x3?y3?(x?y)4 D£®12(?3)4?3?3

2111153£®»¯¼ò(a3b2)(?3a2b3)?(13a6b6)µÄ½á¹û

A£®?9a

B£®?a C£®6a D£®9a2

4.£¨1£©8b8?8?a?b?8?7?a?b?7?a?0,b?0?

5£®ÒÑÖªa?20.6,b?0.62£¬ÔòʵÊýa¡¢bµÄ´óС¹ØϵΪ £®

ËÄ¡¢×÷Òµ£º

1. Á·Ï°ÇóÏÂÁи÷ʽµÄÖµ£º

32(1)252 £¨£²£©273 £¨5£©4381?92

33£¨4£©(254)?2£¨ £³£©(3649)2 £¨6£©23?31.5?612

2»¯¼òÏÂÁи÷ʽ£º

(1)(8)?293?(3102)2?105£» 35(2)5xxx?3x5x?3x

?0.5?2?3?27?9???0.1?2???10?0?227???3??3748=______ 3£®ÒÑÖªn???2,?1,0,1,2,3?£¬Èô(?1)n?(?1)n25£¬

Ôòn?___________£®

?1?x2?ax4£®²»µÈʽ?

?2????2x?a?2?1?£¨

2ºã³ÉÁ¢£¬Ôò£© ???aµÄÈ¡Öµ·¶Î§ÊÇ £®

5£®ÒÑÖªa?a?1?7£¬ÇóÏÂÁи÷ʽµÄÖµ:

3£¨1£©a2?a?321?111£» £¨2£©a2?a2£» £¨3£©a2?a?2(a?1). a2?a?2 £¨ £©

2111156£®»¯¼ò(a3b2)(?3a2b3)?(13a6b6)µÄ½á¹û

ΪÁ˱ÜÃâÉÏÊö¸÷ÖÖÇé¿ö£¬ËùÒԹ涨a>0ÇÒa?1

??b3???7£®¼ÆËã1?2= 3a4?83ab3a2?23ab?43a4??a??

18£®ÒÑÖª£­1

9£®Èôa£¾0£¬b£¾0£¬ÇÒa+b=c£¬ÇóÖ¤£º(1)µ±r£¾1ʱ£¬ar+br£¼cr£»(2)µ±r£¼1ʱ£¬ar+br£¾cr.

¿ÎÌâ¡ì2.1.1Ö¸Êýº¯Êý¼°ÆäÐÔÖÊ£¨1£©

Ò»¡¢ÒýÈë¿ÎÌÃ

ÒýÀý1£ºÄ³ÖÖϸ°û·ÖÁÑʱ£¬ÓÉ1¸ö·ÖÁѳÉ2¸ö£¬2¸ö·ÖÁѳÉ4¸ö£¬??. 1¸öÕâÑùµÄϸ°û·ÖÁÑ x ´Î

ºó£¬µÃµ½µÄϸ°û¸öÊý y Óë x µÄº¯Êý¹ØϵÊÇʲô£¿ ÒýÀý2£ºÄ³ÖÖÉÌÆ·µÄ¼Û¸ñ´Ó½ñÄêÆðÿÄê½µµÍ15%£¬ÉèÔ­À´µÄ¼Û¸ñΪ1£¬xÄêºóµÄ¼Û¸ñΪy£¬ÔòyÓëxµÄº¯Êý¹ØϵʽΪ ¶þ¡¢Ð¿νÌѧ

1£® Ö¸Êýº¯ÊýµÄ¶¨Ò壺

Ò»°ãµØ£¬º¯Êýy?ax(a?0,ÇÒa?1)½Ð×öÖ¸Êýº¯Êý£¬ÆäÖÐxÊÇ×Ô±äÁ¿£¬º¯ÊýµÄ¶¨ÒåÓòΪR£® ̽¾¿1£ºÎªÊ²Ã´Òª¹æ¶¨a>0,ÇÒa 1ÄØ£¿

¢ÙÈôa=0£¬Ôòµ±x>0ʱ£¬ax=0£»µ±x?0ʱ£¬axÎÞÒâÒå.

¢ÚÈôa<0£¬Ôò¶ÔÓÚxµÄijЩÊýÖµ£¬¿ÉʹaxÎÞÒâ

Òå. Èç(?2)x£¬Õâʱ¶ÔÓÚx=114£¬x=2£¬?µÈµÈ£¬ÔÚ

ʵÊý·¶Î§ÄÚº¯ÊýÖµ²»´æÔÚ.

¢ÛÈôa=1£¬Ôò¶ÔÓÚÈκÎx?R£¬ax=1£¬ÊÇÒ»¸ö³£Á¿£¬Ã»ÓÐÑо¿µÄ±ØÒªÐÔ.

̽¾¿2£ºº¯Êýy?2?3xÊÇÖ¸Êýº¯ÊýÂð£¿y=a?x (a>0,ÇÒa?1)£¿

2.Ö¸Êýº¯ÊýµÄͼÏóºÍÐÔÖÊ£º

?1xÔÚͬһ×ø±êϵÖзֱð×÷³öº¯Êýy=2x£¬y=???2??£¬

xy=10x£¬y=??1??10??µÄͼÏó

xxÎÒÃǹ۲ìy=2x£¬y=??1??2?x?1??£¬y=10£¬y=??10??µÄ

ͼÏóÌØÕ÷£¬¾Í¿ÉÒԵõ½ µÄͼÏóºÍÐÔÖÊ

a>1 0

¢Ù1.72.5£¬1.73£» ¢Ú0.8?0.1£¬0.8?0.2£» ¢Û1.70.3£¬0.93.1

Àý2.¸ù¾ÝÌõ¼þ£¬È·¶¨ÊµÊýxµÄÈ¡Öµ·¶Î§. (1) (1)x2?3x?52?2 (2)(a ) >(a )1-x

46Á·Ï°£º¢Å±È½Ï´óС£º(?2.5) ,(?2.5) (2)±È½ÏÏÂÁи÷ÊýµÄ´óС£º1, 0.40?2.52345Àý2£®ÇóÏÂÁк¯ÊýµÄ¶¨ÒåÓò¡¢ÖµÓò£º £¨1£©y?812x?1,

£¨2£©y?1?() 12x2?0.2 £¬ 2.51.6

(3)ÒÑÖªº¯Êýy?ax?3?2(a?0,a?1)µÄͼÏñºã¹ý¶¨µãP£¬ÇóPµãµÄ×ø±ê¡£

£¨4£©ÈôÖ¸Êýº¯Êýy?(a2?1)xÔÚRÉÏÊǼõº¯Êý£¬ÇóaµÄÈ¡Öµ·¶Î§

2.1.2Ö¸Êýº¯Êý¼°ÆäÐÔÖÊ(2)

Ò»¸´Ï°£º

1£®Ö¸Êýº¯ÊýµÄ¸ÅÄͼÏó¡¢ÐÔÖÊ 2£®Á·Ï°£º

£¨1£©ËµÃ÷º¯Êýy?4?x?3ͼÏóÓ뺯Êýy?4?xͼÏóµÄ¹Øϵ£»

£¨2£©½«º¯Êýy?(1)2x3ͼÏóµÄ×óÒÆ2¸öµ¥Î»£¬ÔÙÏÂÒÆ1¸öµ¥Î»ËùµÃº¯ÊýµÄ½âÎöʽÊÇ £»

£¨3£©»­³öº¯Êýy?(1x2)µÄ²Ýͼ¡£

¶þ¡¢Ð¿ν²½â£º

Àý1£® ˵Ã÷ÏÂÁк¯ÊýµÄͼÏóÓëÖ¸Êýº¯Êý

y?2xµÄͼÏóµÄ¹Øϵ£¬²¢»­³öËüÃǵÄʾÒâͼ£º

£¨1£©y?2x?1£» £¨2£©y?2x?2£®

˵Ã÷£ºÒ»°ãµØ£¬µ±a?0ʱ£¬½«º¯Êýy?f(x)µÄͼÏóÏò×óƽÒÆa¸öµ¥Î»µÃµ½y?f(x?a)µÄͼÏó£»µ±

a?0ʱ£¬½«º¯Êýy?f(x)µÄͼÏóÏòÓÒƽÒÆ|a|¸öµ¥Î»£¬µÃµ½y?f(x?a)µÄͼÏó¡£

Á·Ï°£ºËµ³öÏÂÁк¯ÊýͼÏóÖ®¼äµÄ¹Øϵ£º

£¨1£©y?1x?1Óëy?1

x£» £¨2£©y?3?xÓëy?3?x?a£»

£¨3£©y?x2?2xÓëy?x2?2x£®

£¨3£©y?3?x £¨4£©y?ax?1ax?1(a?0,a?1)£®

˵Ã÷£ºÇ󸴺Ϻ¯ÊýµÄÖµÓòͨ¹ý»»Ôª¿Éת»»ÎªÇó¼òµ¥º¯ÊýµÄÖµÓò¡£

Á·Ï°£º1¡¢Èç¹ûijÁÖÇøµÄľ²ÄÐî»ýÁ¿Ã¿Äêƽ¾ù±ÈÉÏÒ»ÄêÔö³¤5©‡£¬ÄÇô¾­¹ýxÄê¿ÉÒÔʹľ²ÄÐî»ýÁ¿Ôö³¤µ½Ô­À´µÄy±¶£¬Ôòº¯ÊýµÄͼÏóy=f(x)´óÖ Ϊ

2.ÒÑÖª5x?a?35?aÓиº¸ù£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ ¡£ 3.º¯Êýy?(1)x?13µÄÖµÓòÊÇ 4.º¯Êýy?5xÓëy??5?xµÄͼÏñ¹ØÓÚ ¶Ô³Æ¡£ 5.º¯Êýy=2

x2?2xµÄµ¥µ÷µÝ¼õÇø¼äÊÇ

6. ×÷³öº¯Êýy?2?xºÍº¯Êýy?2x?2µÄ¼òͼ£¬

²¢½áºÏͼÏó·Ö±ðÖ¸³öº¯Êýµ¥µ÷Çø¼ä¡£

Èý¡¢×÷Òµ£º

1£®ÉèÖ¸Êýº¯Êýf(x)?ax(a?0,a?1)£¬ÔòÏÂÁеÈʽÖв»ÕýÈ·£®£®£®

µÄÊÇ £¨ £©

A£®f(x+y)=f(x)¡¤f(y) B£®f£¨x?y£©?f(x)f(y) C£®f(nx)?[f(x)]n(n?Q)

D£®[f(xy)]n?[f(x)]n¡¤[f(y)]n(n?N?)

2£®º¯Êýy?(x?5)0?(x?2)?12 A£®{x|x?5,x?2} B£®{x|x?2}