DSBÐźŵķÂÕæ·ÖÎö ÏÂÔر¾ÎÄ

Î人Àí¹¤´óѧ¡¶MATLAB¿Î³ÌÉè¼Æ¡·±¨¸æ

s_ni1=var(y)/var(dyi1); dyo1=zn1-znn; s_no1=var(znn)/var(dyo1); dyi2=yn2-y; s_ni2=var(y)/var(dyi2); dyo2=zn2-znn; s_no2=var(znn)/var(dyo2); dyi3=yn3-y; s_ni3=var(y)/var(dyi3); dyo3=zn3-znn; s_no3=var(znn)/var(dyo3); dyi4=yn4-y; s_ni4=var(y)/var(dyi4); dyo4=zn4-znn; s_no4=var(znn)/var(dyo4);

in=[s_ni,s_ni1,s_ni2,s_ni3,s_ni4]; out=[s_no,s_no1,s_no2,s_no3,s_no4]; figure(3); plot(in,out,'*') hold on plot(in,out)

xlabel('ÊäÈëÐÅÔë±È'); ylabel('Êä³öÐÅÔë±È')

2.1.1µ÷ÖÆÐźŷù¶È=0.8¡ÁÔز¨·ù¶È

µ÷ÓóÌÐò£¬³ÌÐòÖÐA=0.8¡£

µ÷ÖÆÐźš¢Òѵ÷ÐźŵIJ¨ÐΡ¢ÆµÆ×Èçͼ2-1Ëùʾ£º

10

Î人Àí¹¤´óѧ¡¶MATLAB¿Î³ÌÉè¼Æ¡·±¨¸æ

ͼ2-1 µ÷ÖÆÐźš¢Òѵ÷ÐźŵIJ¨ÐΡ¢ÆµÆ×ͼ

½âµ÷ÐźŵIJ¨ÐΡ¢ÆµÆ×Èçͼ2-2Ëùʾ£º

ͼ2-2½âµ÷ÐźŵIJ¨ÐΡ¢ÆµÆ×ͼ

ÊäÈëÊä³öÐÅÔë±È¹ØϵÇúÏßÈçͼ2-3Ëùʾ£º

11

Î人Àí¹¤´óѧ¡¶MATLAB¿Î³ÌÉè¼Æ¡·±¨¸æ

ͼ2-3 ÊäÈëÊä³öÐÅÔë±È¹ØϵÇúÏß

2.1.2µ÷ÖÆÐźŷù¶È=Ôز¨·ù¶È

µ÷Óú¯Êý£¬º¯ÊýÖÐA=1¡£µ÷ÖÆÐźš¢Òѵ÷ÐźŵIJ¨ÐΡ¢ÆµÆ×Èçͼ2-4Ëùʾ£º

ͼ2-4µ÷ÖÆÐźš¢Òѵ÷ÐźŵIJ¨ÐΡ¢ÆµÆ×ͼ

12

Î人Àí¹¤´óѧ¡¶MATLAB¿Î³ÌÉè¼Æ¡·±¨¸æ

½âµ÷ÐźŵIJ¨ÐΡ¢ÆµÆ×Èçͼ2-5Ëùʾ£º

ͼ2-5½âµ÷ÐźŵIJ¨ÐΡ¢ÆµÆ×ͼ

ÊäÈëÊä³öÐÅÔë±È¹ØϵÇúÏßÈçͼ2-6Ëùʾ£º

ͼ2-6 ÊäÈëÊä³öÐÅÔë±È¹ØϵÇúÏß

13