依题意得
O1,O1?,O2,O2?是圆柱底面圆的圆心
??∴CD,CD,DE,DE是圆柱底面圆的直径 ∵A,B,B分别为C?D?,DE,D?E?的中点 ∴∴
?????A?O1?D???B?O2?D??90 A?O1?∥BO2?
O2O2?,四边形O2O2?B?B是平行四边形
∵BB?//∴∴∴
BO2∥BO2?
A?O1?∥BO2
O1?,A?,O2,B四点共面
(2)延长∵
A?O1到H,使得O1?H?AO1?,连接HH?,HO1?,HB
O1?H??A?O1?
?H?//O2?B??O2?B?H?OO11∴,四边形是平行四边形
∴∵∴
O1?O2?∥H?B?
O1?O2??O2O2?,O1?O2??B?O2?,O2O2?O1?O2??面O2O2?B?B
O2O2?B?B,BO2??面O2O2?B?B
B?O2??O2?
∴H?B??面∴
BO2??H?B?
易知四边形AA?H?H是正方形,且边长AA??2
tan?HO1?H??∵∴∴
HH??2tan?A?H?G?A?G?1O1?H?A?H?2 ,
tan?HO1?H??tan?A?H?G?1?HO1?H???A?H?G?90
∴
HO1??H?G
?O2?//?O2?BHOO11HB易知,四边形是平行四边形
∴∴∴
19.(本小题满分14分)
2f(x)?lnx?a(1?a)x?2(1?a)x的单调性. a?0设,讨论函数
BO2?∥HO1? BO2??H?G,H?GBO2??平面H?B?G.
H?B??H?
19.解:函数f(x)的定义域为(0,??)
12a(1?a)x2?2(1?a)x?1f?(x)??2a(1?a)x?2(1?a)?xx
2g(x)?2a(1?a)x?2(1?a)x?1 令
??4(1?a)2?8a(1?a)?12a2?16a?4?4(3a?1)(a?1)
1?a?(3a?1)(a?1)1x?0?a?2a(1?a)3时,??0,令f?(x)?0,解得 ① 当 0?x?则当
1?a?(3a?1)(a?1)1?a?(3a?1)(a?1)x??2a(1?a)2a(1?a)或时,f(x)?0
1?a?(3a?1)(a?1)1?a?(3a?1)(a?1)?x??2a(1?a)2a(1?a)当时,f(x)?0
则f(x)在
(0,1?a?(3a?1)(a?1)1?a?(3a?1)(a?1))(,??)2a(1?a)2a(1?a),上单调递增,
1?a?(3a?1)(a?1)1?a?(3a?1)(a?1)(,)2a(1?a)2a(1?a)在上单调递减
1?a?1?② 当3时,??0,f(x)?0,则f(x)在(0,??)上单调递增
?③ 当a?1时,??0,令f(x)?0,解得
x?1?a?(3a?1)(a?1)2a(1?a) ∵x?0,∴
x?1?a?(3a?1)(a?1)2a(1?a) 1?a?(3a?1)(a?1)?2a(1?a)时,f(x)?0
0?x? 则当
x?当
1?a?(3a?1)(a?1)?2a(1?a)时,f(x)?0
(0,1?a?(3a?1)(a?1)1?a?(3a?1)(a?1))(,??)2a(1?a)2a(1?a)上单调递增,在上单调递
则f(x)在减
20.(本小题满分14分)
设b?0,数列(1)求数列
{an}满足a1?b,
an?nban?1an?1?n?1(n≥2).
{an}的通项公式;
2an≤bn?1?1.
(2)证明:对于一切正整数n,
an?20.(1)解:∵
nban?1an?1?n?1
anban?1?nan?1?n?1 ∴
n1n?11???aban?1b ∴nnn?1n??1{}aan?1a① 当b?1时,n,则n是以1为首项,1为公差的等差数列 n?1?(n?1)?1?na?1 a∴n,即nn11n?11??(?)a1?bba1?bn?1② 当b?0且b?1时,n n11??a1?bb(1?b)
当n?1时,nn111?}a1?b是以b(1?b)为首项,b为公比的等比数列 ∴n{n111???()na1?b1?bb ∴nn111?bn???nna(1?b)b1?b(1?b)bn∴
n(1?b)bnan?1?bn ∴
?n(1?b)bn, b?0且b?1?an??1?bn?1, b?1 ?综上所述 2an?bn?1?1?2b?1(2)证明:① 当时,;
n1?b?(1?b)(1?b?b?0b?1② 当且时,
?bn?2?bn?1)
2n(1?b)bn?bn?1?1n?1n2a?b?1,只需证1?b要证n,
2n(1?b)1?b?nbn 即证1?b2n1?b??bn?2?bn?1bn
?bn?2?bn?1)?2n
即证1?b?(b?即证
1)(1?b?bn