高考试题——文科数学广东卷解析版 下载本文

依题意得

O1,O1?,O2,O2?是圆柱底面圆的圆心

??∴CD,CD,DE,DE是圆柱底面圆的直径 ∵A,B,B分别为C?D?,DE,D?E?的中点 ∴∴

?????A?O1?D???B?O2?D??90 A?O1?∥BO2?

O2O2?,四边形O2O2?B?B是平行四边形

∵BB?//∴∴∴

BO2∥BO2?

A?O1?∥BO2

O1?,A?,O2,B四点共面

(2)延长∵

A?O1到H,使得O1?H?AO1?,连接HH?,HO1?,HB

O1?H??A?O1?

?H?//O2?B??O2?B?H?OO11∴,四边形是平行四边形

∴∵∴

O1?O2?∥H?B?

O1?O2??O2O2?,O1?O2??B?O2?,O2O2?O1?O2??面O2O2?B?B

O2O2?B?B,BO2??面O2O2?B?B

B?O2??O2?

∴H?B??面∴

BO2??H?B?

易知四边形AA?H?H是正方形,且边长AA??2

tan?HO1?H??∵∴∴

HH??2tan?A?H?G?A?G?1O1?H?A?H?2 ,

tan?HO1?H??tan?A?H?G?1?HO1?H???A?H?G?90

HO1??H?G

?O2?//?O2?BHOO11HB易知,四边形是平行四边形

∴∴∴

19.(本小题满分14分)

2f(x)?lnx?a(1?a)x?2(1?a)x的单调性. a?0设,讨论函数

BO2?∥HO1? BO2??H?G,H?GBO2??平面H?B?G.

H?B??H?

19.解:函数f(x)的定义域为(0,??)

12a(1?a)x2?2(1?a)x?1f?(x)??2a(1?a)x?2(1?a)?xx

2g(x)?2a(1?a)x?2(1?a)x?1 令

??4(1?a)2?8a(1?a)?12a2?16a?4?4(3a?1)(a?1)

1?a?(3a?1)(a?1)1x?0?a?2a(1?a)3时,??0,令f?(x)?0,解得 ① 当 0?x?则当

1?a?(3a?1)(a?1)1?a?(3a?1)(a?1)x??2a(1?a)2a(1?a)或时,f(x)?0

1?a?(3a?1)(a?1)1?a?(3a?1)(a?1)?x??2a(1?a)2a(1?a)当时,f(x)?0

则f(x)在

(0,1?a?(3a?1)(a?1)1?a?(3a?1)(a?1))(,??)2a(1?a)2a(1?a),上单调递增,

1?a?(3a?1)(a?1)1?a?(3a?1)(a?1)(,)2a(1?a)2a(1?a)在上单调递减

1?a?1?② 当3时,??0,f(x)?0,则f(x)在(0,??)上单调递增

?③ 当a?1时,??0,令f(x)?0,解得

x?1?a?(3a?1)(a?1)2a(1?a) ∵x?0,∴

x?1?a?(3a?1)(a?1)2a(1?a) 1?a?(3a?1)(a?1)?2a(1?a)时,f(x)?0

0?x? 则当

x?当

1?a?(3a?1)(a?1)?2a(1?a)时,f(x)?0

(0,1?a?(3a?1)(a?1)1?a?(3a?1)(a?1))(,??)2a(1?a)2a(1?a)上单调递增,在上单调递

则f(x)在减

20.(本小题满分14分)

设b?0,数列(1)求数列

{an}满足a1?b,

an?nban?1an?1?n?1(n≥2).

{an}的通项公式;

2an≤bn?1?1.

(2)证明:对于一切正整数n,

an?20.(1)解:∵

nban?1an?1?n?1

anban?1?nan?1?n?1 ∴

n1n?11???aban?1b ∴nnn?1n??1{}aan?1a① 当b?1时,n,则n是以1为首项,1为公差的等差数列 n?1?(n?1)?1?na?1 a∴n,即nn11n?11??(?)a1?bba1?bn?1② 当b?0且b?1时,n n11??a1?bb(1?b)

当n?1时,nn111?}a1?b是以b(1?b)为首项,b为公比的等比数列 ∴n{n111???()na1?b1?bb ∴nn111?bn???nna(1?b)b1?b(1?b)bn∴

n(1?b)bnan?1?bn ∴

?n(1?b)bn, b?0且b?1?an??1?bn?1,   b?1   ?综上所述 2an?bn?1?1?2b?1(2)证明:① 当时,;

n1?b?(1?b)(1?b?b?0b?1② 当且时,

?bn?2?bn?1)

2n(1?b)bn?bn?1?1n?1n2a?b?1,只需证1?b要证n,

2n(1?b)1?b?nbn 即证1?b2n1?b??bn?2?bn?1bn

?bn?2?bn?1)?2n

即证1?b?(b?即证

1)(1?b?bn