数学名师叶中豪整理高中数学竞赛平面几何讲义(完整版) 下载本文

高中平面几何

叶中豪

学习要点

几何问题的转化

圆幂与根轴

P’tolemy定理及应用

几何变换及相似理论

位似及其应用

完全四边形与Miquel点

垂足三角形与等角共轭

反演与配极,调和四边形

射影几何

复数法及重心坐标方法

例题和习题

1.四边形ABCD中,AB=BC,DE⊥AB,CD⊥BC,EF⊥BC,sin?sin??tan??????12。求证:2EF=DE+DC。(10081902.gsp) AθEDγBFC

2.已知相交两圆O和O'交于A、B两点,且O'恰在圆O上,P为圆O的AO'B

弧段上任意一点。∠APB的平分线交圆O'于Q点。求证:PQ2=PA×PB。(10092401-1. gsp)

AQPOO'B

3.设三角形ABC的Fermat点为R,连结AR,BR,CR,三角形ABR,BCR,

ACR的九点圆心分别为D,E,F,则三角形DEF为正三角形。(10082602.gsp)

ADERF

4.在△ABC中,已知∠A的内角平分线和外角平分线分别交外接圆于D、E,

点A关于D、E的对称点分别为F、G,△ADG和△AEF的外接圆交于A和另一点P。求证:AP//BC。(10092102.gsp)

PGEABCBDCF

5.圆O1和圆O2相交于A、B两点,P是直线AB上一点,过P作两圆作切线,

分别切圆O1和圆O2于点C、D,又两圆的一条外公切线分别切圆O1和圆O2于点E,F。求证:AB、CE、DF共点。(10092201.gsp)

PECAFDO1BO2

6.四边形ABCD中,M是AB边中点,且MC=MD,过C、D分别作BC、AD

的垂线,两条垂线交于P点,再作PQ⊥AB于Q。求证:∠PQC=∠PQD。(10081601-26.gsp)

DPCA

7.已知RT△ABD∽RT△ADC,M是BC中点,AD与BC交于E,自C作AM

垂线交AD于F。求证:DE=EF。(10083001.gsp)

AMQBFMECDB

8.在△ABC中,AB=AC,D为BC边的中点,E是△ABC外一点,满足CE⊥

AB,BE=BD。过线段BE的中点M作直线MF⊥BE,交△ABD的外接圆的劣弧AD于点F。求证:ED⊥DF。(2010年女子竞赛)(10081601-4.gsp)

AFEMBD

9.设圆I1是△ABC的BC边外的旁切圆,D、E、F分别是切点,若I1D与EF

交于P点。求证:AP平分底边BC。(10082001-8.gsp)

ACFBPDMCEI1

10.如图,⊙O切△ABC的边AB于点D,切边AC于点C,M是边BC上一

点,AM交CD于点N.求证:M是BC中点的充要条件是ON⊥BC。(09031302.gsp) ADNCMBO

11.已知:BC是圆上的定弦,而动点A在圆上运动,M是AC中点,作MP⊥

AB于P。求P点的轨迹。(10081601-4.gsp)

APMOBC

12.△ABC外接圆为圆O,P为AB上一点,过P分别作OA、OB的垂线,与AC、BC交于S、T,与AB交于M、N。求证:PM=MS的充要条件是PN=NT。(10081601-3.gsp)

PBNMATOS

13.在ΔABC中AC>BC,F是AB的中点,过F作它的外接圆直径DE,使得

C、E在AB同一侧,又过C做AB的平行线交DE于L。 求证 :(AC+BC) 2=4DL×EF。 (09011003.gsp)

DLCCOFABE

14.已知:P是垂直ABC外接圆BC弧上任意一点,PD⊥BC于D,PE⊥CA于

E,PF⊥AB于F。求证:(BC/PD)=(AC/PE)+(AB/PF)。(09012201-7.1.gsp)

AFDBEC

15.已知O是△ABC的外心,M是BC边中点,D是OM延长线上一点,满足

DO=DB,E、F分别是AB、AC边上的点,满足∠MEA=∠MFA=∠A。求证:AD⊥EF。(10080302.gsp)

APEBOFMC

16.已知△ABC中,AB=AC,线段AB上有一点D,线段AC延长线上有一点

E,使得DE=AB。线段DE与△ABC的外接圆交于点T,P是线段AT延长线上的一点。求证:点P满足PD+PE=AT的充要条件是P在△ADE的外接圆上。(2000年国家集训队)(10082201-1.gsp)

ADDCTPEB

17.已知△ABC中,内心I关于BC边中点M的对称点为I',S是BC弧(不含

A点)中点,直线SI'交△ABC的外接圆于另一点P。求证:P点到△ABC较远的顶点距离等于到另两个顶点距离的和。(10082201-5.gsp)

APIBI'CM

18.在△ABC外作△DBC∽△ECA∽△FAB,联结AD、BE、CF。

求证:AF+FB+BD+DC+CE+EA≥AD+BE+CF。(10081601-2.gsp)

AFSEBDC

19.过△ABC内一点O引三边AB、BC、CA的平行线与其它两边的交点分别

为E、F、G、H、I、K,过O作△ABC的外接圆的弦AL。 求证:OE·OF+OG·OH+OI·OK=OA·OL。(09042002.gsp)

AHIFOEBKGCL

20.一小圆内切大圆于点N,BA、BC是大圆的两条弦,且分别切小圆于K、M,

劣弧AB和劣弧BC的中点分别为Q、P,又设△BQK、△BPM外接圆的另一个交点为B1。求证:BPB1Q为平行四边形。(10082001-1.gsp)

BQMB1PKCAN

21.圆O与圆O1、圆O2同时相切,切点为S、T,圆O1与圆O2交于A、B两点,且圆O2的圆心恰在圆O1上。设公共弦AB延长交圆O于C、D两点,联结SC、SD分别交圆O1于P和Q。求证:PQ与圆O2相切。(40届IMO)(10082001-12.gsp)

CPAOO1BSQDO2UTR

22.设KL、KN是圆O的切线,M是KN延长线上一点,过K、L、M三点的

圆与圆O交于P,作NQ⊥LM于Q。求证:∠MPQ=2∠NML。(98年伊朗竞赛)(10081601-5、6.gsp)(09022203.gsp)

LOQPKNM

23.设△ABC内接于圆O,过O作OE⊥BC交圆O于E,交AB于F,交AC

延长线于G。过G作圆O的切线GT,T为切点。求证:TF⊥GE。(10092104.gsp)

GATFOBEC

24.已知圆O外一点P向圆O作切线PA、PB和一条割线PEF,M是EF上一

点,联结BM延长交圆O于C。求证:AC//PEF的充要条件是M为EF中点。(10092401-6.gsp)

ACOPFEMB

25.过点P任作圆O的两条割线PAB、PCD,直线AD与BC交于Q,弦DE//PQ,BE交PQ延长线于M。求证:OM⊥PQ。(10092103-1.gsp)

DECOQPABM

26.如图,设⊙O1与⊙O2交于AB两点。AC是⊙O2的切线,交⊙O1于C点。

AD是⊙O1的切线,交⊙O2于D点。过A任作直线,交⊙O1、⊙O2及经过A、C、D三点的圆分别于M、N、P。求证:AM=NP。(10091002-6.gsp)

AO1MCBNO2DP

27.两圆圆O1和圆O2相交于M、P,过M作圆O2的切线交圆O1于A;又过M作圆O1的切线交圆O2于B,在直线MP上截取PH=MP。求证:四边形MAHB内接于圆。(10091002-1.gsp)

MO1PBA

28.已知两个半径不等的圆O1和圆O2相交于M、N两点,且圆O1和圆O2分

别与圆O内切于S、T两点。求证:OM⊥MN的充要条件是S、N、T三点共线。(1997年全国联赛)(10090301-3.gsp)

O2HOO1MO2SNT

29.设以O为圆心的圆经过△ABC的两个顶点A和C,且与边AB、BC分别交

于K和N,又设△ABC和△KBN的外接圆交于B和另一点M。求证:∠OMB=90°。 (1985年IMO)(10090301-1.gsp)

BMKNOAC

30.已知:在△OAB与△OCD中,OA=OB,OC=OD,直线AB与CD交于点P,△PAC与△PBD的外接圆交于P、Q两点。求证:OQ⊥PQ。(09022301.gsp)

OCADB 31.已知半圆圆心为O,直径为AB,一直线交半圆于C、D,交AB延长线于P,

设M是△AOC与△BOD外接圆除O点外的另一交点。求证:OM⊥MP。(10091001.gsp) PQDCMOBP

32.凸四边形ABCD内接于圆O,两组对边所在直线分别交于点E、F,对角线

AC、BD交于G,作GH⊥EF于H,圆O的弦MN经过G点。求证:GH与圆O交点恰是△HMN的内心。(10092103-2.gsp)

AOBGMCDN

33.⊙O为△ABC的外接圆,P为劣弧AB上一点,E、F分别为AC、AB延长

线上的点,BE、CF交于D,PE、PF分别交⊙O于S、R。若AD、BC、RS共点,求证:点D在⊙O上。(10090801.gsp)(10092103-8.gsp)

PAEHFRBDCSF

34.已知:D、E、F分别在△ABC三边上,满足EB=ED,FC=FD,O是△

ABC外心。求证:A、E、O、F四点共圆。(09033102.gsp)

AEFEOBDC

35.如图,设N是△ABC的BAC弧中点,M是BC边中点,I是△ABC的内

心。求证:∠ANI=2∠IMC。(09021701.gsp)

NAIBMC

36.设T为△ABC的内切圆与BC边的切点,D为BC上任一点,I1、I2分别为

△ABD、△ACD的内心。求证:T I1⊥T I2。(10081701-9.gsp)

AI2I1BDTC

37.矩形ABCD中,AB=2AC。P是以为AB直径的半圆上任意一点,PC、

PD分别交AB于F、E。求证:AE2+BF2=AB2。(09013001.gsp)

PAFEBCD

38. AB是圆O的直径,P是过B所作切线上的任一点,过P作圆O的割线

PCE,联结直线PO分别交AC、AD于E、F。求证:OE=OF。(10081001-4.gsp)

AFOEDCBP

39.自圆O外一点P作切线PA、PB及割线PCD,自C作PA的平行线,分别

交AB、AD于E、F。求证:CE=EF。(10081001-5.gsp)

PCAEBFO

40.A为圆O上一点,B为圆外一点,BC、BD分别相切圆O于C、D,DE

垂直AO于E,DE分别交AB、AC于F、G。求证:DF=FG。(09042001.gsp)

BDKDCFGAOE

41.P为圆外一点,PA、PD为切线,PCE为割线。过D作PA的平行线,分

别与AC延长线及线段AE交于B、F。求证:D为BF中点。(09031302.gsp)

PBCADOFE

42.已知P、Q是等腰三角形ABC(AB=AC)内两点,满足∠ABP=∠QCB,

且∠ACP=∠QBC。求证:A、P、Q三点共线。(10090101-1.gsp)

APQ

43.已知锐角△ABC中,AD是高,O是外心,AO的延长线交过O、B、C三

点的圆于P,自P作PE⊥AB于E,PF⊥AC于F。求证:DEPF是平行四边形。(10091701.gsp)

ABCOBDEFCP

44.已知E、F是圆内接四边形ABCD对边AB、CD的中点,M是EF的中点,

自E分别作BC、AD的垂线,垂足记为P、Q。求证:MP=MQ。(10091701-1.gsp)

AQDEMFBPC

45.AD为△ABC内角平分线,I1、I2为△ABD、△ACD的内心,以I1I2为底向

1BC边作等腰△E I1I2,使得∠I1EI2=∠BAC。求证:DE⊥BC。

2(10081701-1.gsp)

AI1I2BDC

46.已知P是凸四边形内一点,满足∠PAB=∠CAD,∠PCB=∠ACD。求证:

PB=PD的充要条件是ABCD四点共圆。(2004年IMO)(10091701-6.gsp)(09030801.gsp)

AEBPDC

47.已知D是△ABC底边BC上任一点,P是形内一点,满足∠1=∠2,∠3=

∠4。求证:(PB/PC)=(AB/AC)。(09030801.gsp)

A12P3BD4C

48.已知:D是△ABC的BC中垂线上一点,I1、I2是△ABD、△ACD的内心,

E是△ABC外接圆弧BAC的中点。求证:A、E、I1、I2四点共圆。(08081201.gsp)

EAI1BDI2C

49.如图,△ABC中,M为BC的中点,以AM为直径的圆分别与AB、AC交于E、F两点,圆在E、F两点的切线交于点D。 求证:DM⊥BC。(09013101.gsp)

AEFBMCD

50.已知:⊙O两切线PA、PB和一割线PCD,AD、AP交C处的切线于E、F,BE交DF于K。求证:K在圆O上。(09022201.gsp)

PEFKCABO

51.设⊙O1与⊙O2交于C、D。过D的直线交⊙O1与⊙O2于A、B。点P在弧AD上,PD与AC的延长线交于M,Q在弧BD上,QD与BC的延长线交于N,O为△ABC外心。求证:MN⊥OD是P、Q、M、N四点共圆的充要条件。(09020401.gsp)

DNMCO1DO2APQBO

52.设X是P点的Simson线关于△ABC的垂极点。求证:XP被Simson线所平分。(09031903.gsp)

AXFDBCEP

53.已知:AD是高,O、H是外心和垂心,过D作OD垂线,交AC于E。求证:∠DHE=∠C。(09022202.gsp)

AOHEBDC

54.△ABC中,AD为边BC上的中线,E、F、G分别为AB、AC、AD上的

点,且A、E、G、F四点共圆。设△BDE外心为O1、半径为r1;△CDF外心为O2、半径为r2。求证:GO12+GO22=r12+r22。(09031401.gsp)

AEFGO1BDO2C

55.已知P是△ABC内一点,A1、B1、C1分别是圆弧BPC、CPA、APB的中点。

求证:P、A1、B1、C1四点共圆。(09042401.gsp)

AB1A1PC1BC

56.给定△ABC,D、E、F是边BC、CA、AB上的任意三点,M、N分别是△

BDF、△CDE的外心。P、Q分别是BC、MN上的点,满足(BP/PC)=(MQ/QN)。AP与⊙AEF相交于R点。求证:(1)QR=QD;(2)∠RQD=2∠APC。(09042601.gsp)

AFEMQNCR

57.已知⊙O1与⊙O2交于C、D两点,A、B分别是两圆上的点,满足PA=PB,E、F是弧AQ、BQ中点。求证:C、D、E、F四点共圆。(09022001.gsp)

PBDPAO1CDO2BEQF

58.△ABC中,D、E、F是边BC、CA、AB的中点,X、Y、Z是各边上高的

垂足,EZ与FY交于L,FX与DZ交于M,DY与EX交于N。求证:L、M、N三点共线。(10092101.gsp)

MAZFLHONYEB

XDC

59.设△ABC的内切圆分别与三边切于D、E、F,联结AD交内切圆于另一点

P,联PB、PE、PF。求证:PF//BC的充要条件是∠BPD=∠EPD。(10091002-7.gsp)

AFPE

60.已知△ABC和任意直线d,自A、B、C作d的垂线,垂足分别为A'、

B'、C'; 再自A'、B'、C'分别作对边BC、CA、AB的垂线,设这三条垂线共点于H。在d上任取一个动点M,自M作d的垂线,分别交AB、AC所在直线于K、L。在线段BK、CL及HA'延长线上分别取分点P、Q、X,满足(BP/PK)=(CQ/QL)=(HA'/A'X)。求证:XM⊥PQ。(09031602.gsp)

LAKQPHBBDCCdB'MA'C' 61.已知ABCD是等腰梯形,P是其底边BC上任意一点,E、F两点分别位

于AB、AC上,满足EB=EP,FP=FC。联接EF,并作P点关于EF的轴对称点Q。求证:DQ⊥PQ。(09041401.gsp)

XAEQDFCBP

62.设D、E分别为△ABC的边AB、BC上的点,P是△ABC内一点,且PE

=PC,△DEP∽△PCA。求证:BP是△PAD的外接圆的切线。(09040601.gsp)

ADP

63.在凸四边形ABCD中,∠DCA与∠CDB的外角平分线分别是边CB与DA,

E、F分别为AC、BD的延长线上的点,且C、E、F、D四点共圆。平面上的一点P使得DA是∠PDE的外角平分线,CB是∠PCF的外角平分线。边AD与BC所在直线交于点Q。求证:点P在边AB上的充分必要条件是点Q在线段EF上。(09033001.gsp)

BECFQERDCK

64.平面上有四个点A1、A2、A3、A4,其中任意三个点都不在一条直线上。

并且它们满足:A1A2×A3A4=A1A3×A2A4=A1A4×A2A3。对于任意{i,j,k,l}={1,2,3,4},我们设Oi为△AjAkAl的外心。若对于1≤i≤4均有Ai≠Oi,证明:四条直线AiOi平行或共点。(09030602.gsp)

O3APBA1O4A4O2A2A3O1

65.圆O1和圆O2相交于P、Q两点,AB是两圆的外公切线,BP、AP分别交

另一圆于C、D,直线AC、BD交于X点,过X、A、B三点的圆与过X、C、D三点的圆交于另一点M。求证:∠MBX=∠MQP。(10082901-1.gsp)

XAPCO2O1DBMQ

66.在任意△ABC的BC边下方取D点,满足∠ABD=∠ACD=120°,并作

正三角形EBC。求证:△ABC的Euler线平行于DE。(10073102.gsp)

AHOCBE

67.已知M、N是四边形ABCD对边AD、BC上任意两点,E、F是对边AB、

CD上两点,满足(AE/EB)=(CF/FD)=(AM/MD)*(CN/NB),AN、BM交于P,CM、DN交于Q。求证:PQ//EF。(10082601-3.gsp)

AEPQFBCMDDN