?LP(x,y)dx?Q(x,y)dy??{P[?(t),?(t)]?'(t)?Q[?(t),?(t)]?'(t)}dt??,
3、对面积的曲面积分:
??f(x,y,z)ds???f[x,y,z(x,y)]?Dxy1?Zx(x,y)^2?Zy(x,y)^2dxdy,
4对坐标的曲面积分:
??F(x,y,z)?dS???P(x,y,z)dydz?Q(x,y,z)dzdx?R(x,y,z)dxdy??。
当然是在原有的积分基础上进行了一个延伸,主要是让我们了解其性质以及和以前所学积分的不同,再者就是让我们学会简单的二重积分计算。
第九章也是积分,主要和几何知识结合起来,为我们介绍了求弧长、面积、坐标的曲线和曲面积分的方法。对于这些内容,还给到了格林公式、高斯公式和斯托克斯公式,作为计算这些积分的工具,学会这些公式的使用无疑对于计算起了很大的帮助,同时也应该了解这些公式的推导过程,有利于对公式的记忆以及掌握它的内涵。
第十章学习了无穷级数这一新概念,引入了常数项级数、正向级数、交错级数、幂级数、傅里叶级数等级数。在正项级数中讲了几种敛散性的判断,有比较判别法、比较判别法的极限形式、比较判别法、根值判别法,而在交错级数中有莱布尼茨判别法来判断敛散性,在幂级数中有
?an(x?x0)^n?a0?a1(x?x0)?a2(x?x0)^2????an(x?x0)^nn?0?,在求收敛域时讲到了
收敛半径的求解,主要有比值法、根值法。而在第五节中介绍了函数展开成幂级数,泰勒公式,直接和间接展开法。第七节中讲了三角级数、正弦级数、余弦级数、周期函数的傅里叶展开式。对于这些级数,都有自己的一些特点,掌握了其概念与性质对于学好这一章非常重要。
最后,说说自己的一些想法:感觉自己刚进大学时,大一上学期学习高数的热情比现在要高,这主要还是自己的原因,我觉得随着学习的深入,产生畏难情绪是免不了的,但我却并没有去克服,让自己的知识有了好多的漏洞。还有就是对着门学科没有足够的重视起来,才让自己在学习中很随便。所以我觉得要想学好这门学科,最重要的还是自己的态度,只有认识上来了,才能够去学好这门学科。还有一个就是在态度严谨的同时我们还要有持之以恒的毅力,我发现要学好高数就要对自己的兴趣上有很大的培养才行,在浓浓的兴趣下我们要多加练习才行,对一些重要的知识点我们要按老师的要求多练习,还要有自己的每章小结,对每一节的知识点都要在自己的大脑里有一个总体的轮廓,这样我们学习起来才会事半功倍,因为从所周知的数学是一门逻辑科学,它有很强的逻辑性,多学习数学也能锻炼我们的逻辑思维,我很喜欢数学,只是自己在数学上的用心不够,但是我觉得学习数学可以让一个人心静,每当我很烦躁的时候,总喜欢那本数学书来看,这样我可快就能静下心来,因为学习数学需要很清晰的思维。其实数学给我的远不止知识,它还教会了我很多东西,我很享受数学而且会一直享受下去。