MATLABsimulink对信号调制与解调的仿真 下载本文

通信系统仿真

过零检测法解调器的原理图和各点时间波形如图2 - 10 所示.其基本原理是,二进制移频键控信号的过零点数随载波频率不同而异,通过检测过零点数从而得到频率的变化. 在图 2 - 10 中,输入信号经过限幅后产生矩形波,经微分, 整流,波形整形,形成与频率变化相关的矩形脉冲波,经低通滤波器滤除高次谐波,便恢复出与原数字信号对应的基带数字信号.  图 2 – 10 过零检测法原理图和各点时间波形 2.3二进制移相键控(2PSK)

在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号. 通常用已调信号载波的 0°和 180°分别表示二进制数字基带信号的 1 和 0. 二进制移相键控信号的时域表达式为

e2PSK(t)= g(t-nTs)]cosωct ( 2-1 - 9) 其中, an与2ASK和2FSK时的不同,在2PSK调制中,an应选择双极性,即

(2-1-10)

13

通信系统仿真

(2–1-11)

若g(t)是脉宽为Ts, 高度为1的矩形脉冲时,则有 e2PSK(t)=cosωct, 发送概率为P -cosωct, 发送概率为1-P

由式(2 -1 - 11)可看出,当发送二进制符号1时,已调信号e2PSK(t)取0°相位,发送二进制符号0时,e2PSK(t)取180°相位.若用φn表示第n个符号的绝对相位,则有  φn= 0°, 发送 1 符号 180°, 发送 0 符号

这种以载波的不同相位直接表示相应二进制数字信号的调制方式,称为二进制绝对移相方式.二进制移相键控信号的典型时间波形如图 2 - 11 所示. 图 2 – 11 二进制移相键控信号的时间波形

二进制移相键控信号的调制原理图如图 2 - 12 所示. 其中图(a)是采用模拟调制的方法产生2PSK信号,图(b)是采用数字键控的方法产生2PSK信号.

2PSK信号的解调通常都是采用相干解调, 解调器原理图如图 2- 13 所示.在相干解调过程中需要用到与接收的2PSK信号同频同相的相干载波,有关相干载波的恢复问题将在第 11 章同步原理中介绍.

 2PSK信号相干解调各点时间波形如图 2 - 14 所示. 当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错. 

图 2- 122PSK信号的调制原理图

14

通信系统仿真

图 2- 132PSK信号的解调原理图

图 2 -142PSK信号相干解调各点时间波形

15

通信系统仿真

这种现象通常称为\倒π\现象.由于在2PSK信号的载波恢复过程中存在着180°的相位模糊,所以2PSK信号的相干解调存在随机的\倒π\现象,从而使得2PSK方式在实际中很少采用. 

16