4、小数乘整数计算方法:① 先把小数扩大成整数② 按整数乘法乘法法则计算出积③ 看被乘数有几位小数,就从积的右边起数出几位点上小数点。④ 若积的末尾有0可以去掉
5、小数乘小数的计算方法:① 先把小数扩大成整数② 按整数乘法乘法法则计算出积③ 看积中有几位小数就从积的右边起数出几位,点上小数点。如果乘得的积的位数不够,要在前面用0补足。
6、小数四则混合运算小数四则混合运算的运算顺序与整数四则混合运算的顺序相同:同级运算,从左往右;两级运算,先乘除后加减;有括号的,先算括号里的。乘法的交换律、结合律、分配律同样适用于小数乘法,应用这些运算定律,可以使计算简便。乘法交换律 a×b=b×a乘法结合律 (a×b)×c=a×(b×c)乘法分配律 a×(b+c)=a×b+a×c a×(b—c)=a×b — a×c
7、积的近似数:保留a位小数,就看第a+1位,再用四舍五入的方法取值。保留整数:表示精确到个位,看十分位上的数;保留一位小数:表示精确到十分位,看百分位上的数;保留两位小数:表示精确到百分位,看千分位上的数;……按实际需要用“四舍五入法”保留一定的小数位数,求积的近似值。
8、小数点位置移动引起小数大小变化的规律① 小数点位置移动引起小数大小变化的规律:小数点向左移动一位、两位、三位……这个数就缩小到原来的1/10 、1/100 、 1/1000……小数点向右移动一位、两位、三位……这个数就扩大到原来的10倍、100倍、1000倍……
② 小数点右移,位数不够时,要添“0”补位,小数点移动完后,整数最高位前边的“0”要去掉;小数点左移,位数不够时,也用“0”补足,点上小数点,若整数部分没有数,用“0”表示,若小数末尾有0,根据小数的性质,应把末尾的“0”去掉。
③ 积的小数位数与乘数的小数位数的关系:在小数乘法中,两个乘数一共有几位小数,积就有几位小数。
④ 积的近似值的求法:一般要先算了正确的积,再根据题目要求或生活习惯用“四舍五入”
⑤ 比较大小:① 一个数乘以一个大于1的数,积大于它本身。例如:6.5×1.5>6.5② 一个数乘以一个等于1的数,积等于它本身。例如:6.5×1=6.5③ 一个数乘以一个小于1的数,积小于它本身。例如:6.5×0.9<6.5
第四单元 观察物体
1、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。 2、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
3、不同形状的物体,分别从正面、侧面、上面看,看到的形状有可能是相同的,也有可能是不同的。
4、方法指导:在不同位置观察由小正方体平摆的物体,并判断观察到物体的平面图,在哪一位置观察,就从哪一面数出小正方形的数量并确定摆出的形状,注意视线应垂直于所要观察的平面。
第五单元 认识方程
1、数量关系:用字母或者含有字母的式子都可以表示数量,也可以表示数量关系。 2、用字母表示有关图形的计算公式:①长方形周长公式:C=2(a+b)②长方形面积公式:S=ab③正方形周长公式:C=4a④正方形面积公式:S=a2
3、用字母表示运算定律:如果用a、b、c分别表示三个数,那么①加法交换律a+b=b+a②加法结合律(a+b)+c=a+(b+c)③乘法交换律a×b=b×a④乘法结合律(a×b)×c=a×(b×c)⑤乘法分配律 (a+b) × c=a×c+b×
c (a-b)×c=a×c-b×c⑥减法的运算性质a-b-c=a-(b+c)⑦除法的运算性质a÷b÷c=a÷(b×c)
4、数字与字母乘积的表示法:在含有字母的式子中,字母和字母之间、字母和数字之间的乘号可以用“?”表示或省略不写,数字一般都写在字母前面。数字1与字母相乘时,1省略不写,字母按顺序写。如:a×b=ab、5×a=5a、1×a=a、a×a=a2
5、区别a2和2a的区别:2a=2×a a2=a×a 6、方程的含义:含有未知数的等式叫方程。
7、方程与等式的联系区别:方程是等式,但等式却不都是方程。 8、等式性质一:等式两边都加上(或减去)同一个数,等式仍然成立。
9、等式性质二:等式两边都乘一个数(或除以一个不为0的数),等式仍然成立。
10、解方程的书写格式:解方程前要先写一个“解”字和冒号;一步一脱式,每算一步,等号都要上、下对齐;表示未知数的字母一般都要放在等号的左侧。
11、解方程和方程的解使方程左右两边相等的未知数的值叫作方程的解。求方程的解的过程叫作解方程。
12、看图列方程关键是看懂图意,从中找出等量关系,然后再根据等量关系列出方程。在列方程时,把未知数尽量放在等式左边。
13、用方程解决实际问题(解应用题)首先要用字母表示未知数,然后根据题目中数量之间的相等关系,列出一个含有未知数的等式(也就是方程)再解出来,最后检验,写出答语。
14、图形中的规律 ① 摆n个三角形需要2n+1根小棒。② 摆n个正方形需要3n+1根小棒。
第六单元 数据的表示和分析
1、条形统计图:横向:用直条的长短表示,竖向表示类别,横向表示数量;纵向:用直条的高矮表示,横向表示类别,竖向表示数量。不同的统计图中1格表示的单位量是不同的,要结合具体的情况来判断1格表示几个单位。数据大,每1格所表示的单位量就多,数据小,每1格所表示的单位量就小。条形统计图的特点:直观、方便、便于察看数量多少。
2、制作条形统计图的方法:确定水平方向,标出项目;确定垂直方向代表的数量(1格代表的数量);根据数据的大小画出长度不同的直条;写出标题。
3、折线统计图的特点:
能获取数据变化情况的信息,并进行简单的预测。
4、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
5、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
6、平均数是一组数据平均水平的代表。平均数=总数量÷数量个数 总数量=平均数×数量个数
数量个数=总数量÷平均数
本册补充知识点 常用数量关系 1、平均数关系式:总数÷总份数=平均数
2、总数、份数、每份数关系式:每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
3、行程关系式: 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、购物问题关系式: 单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工程问题关系式:工作效率×工作时间=工作量 工作量÷工作效率=工作时间工作量÷工作时间=工作效率
6、相遇问题关系式:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和
7、加法关系式:加数+加数=和和-一个加数=另一个加数
8、减法关系式:被减数-减数=差被减数-差=减数差+减数=被减数 9、乘法关系式:乘数×乘数=积积÷一个乘数=另一个乘数
10、除法关系式: 被除数÷除数=商被除数÷商=除数商×除数=被除数