综合练习 平行线的性质与判定
1.如图,要判定AB∥CD,需要哪些条件?根据是什么?
2.填写推理理由:
如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.
解:∵CD∥EF,
∴∠DCB=∠2(____________________).
∵∠1=∠2,∴∠DCB=∠1(____________________). ∴GD∥CB(____________________). ∴∠3=∠ACB(____________________).
3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.
4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.
5.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.
(1)求∠PEF的度数;
(2)若已知直线AB∥CD,求∠P的度数.
6.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.求证:EC∥DF.
7.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.
8.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?为什么?
9.如图,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么BA是否平分∠EBF,试说明理由.
10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.
11.如图,直线l1、l2均被直线l3、l4所截,且l3与l4相交,给定以下三个条件:①l1⊥l3;②∠1=∠2;③∠2+∠3=
90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.
12.如图1,CE∥AB,所以∠ACE=∠A,∠DCE=∠B,所以∠ACD=∠ACE+∠DCE=∠A+∠B. 这是一个有用的结论,借用这个结论,在图2所示的四边形ABCD内,引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.
参考答案
1.略
2.两直线平行,同位角相等 等量代换 内错角相等,两直线平行 两直线平行,同位角相等
3.证明:∵AD∥BE,
∴∠A=∠3. ∵∠A=∠E,