分析化学课后习题答案 下载本文

分析化学课后习题答案

单色器 吸收池 检测器 Michelson干涉仪或光栅 盐窗做成的气体池或液体池 真空热电偶、热电型或光电导型检测器 棱镜或光栅 紫外区须用石英比色皿 可见区用石英或玻璃比色皿 光电倍增管 3、简述红外吸收光谱产生的条件。 (1)辐射应具有使物质产生振动跃迁所需的能量,即必须服从νL= △V·ν (2)辐射与物质间有相互偶合作用,偶极矩必须发生变化,即振动过程△μ≠ 0; 4、何为红外非活性振动?

有对称结构分子中,有些振动过程中分子的偶极矩变化等于零,不显示红外吸收,称为红外非活性振动。

5、何为振动自由度?为何基本振动吸收峰数有时会少于振动自由度? 振动自由度就是分子基本振动的数目,即分子的独立振动数。对于非直线型分子,分子基本振动数为3n-6。而对于直线型分子,分子基本振动数为3n-5。 振动吸收峰数有时会少于振动自由度其原因可能为: 分子对称,振动过程无偶极矩变化的红外非活性活性。 两个或多个振动的能量相同时,产生简并。 吸收强度很低时无法检测。

振动能对应的吸收波长不在中红外区。 6、基频峰的分布规律有哪些?

(1)折合质量越小,伸缩振动频率越高

(2)折合质量相同的基团,伸缩力常数越大,伸缩振动基频峰的频率越高。 (3)同一基团,一般?> ? > ?

7、举例说明为何共轭效应的存在常使一些基团的振动频率降低。

共轭效应的存在,常使吸收峰向低频方向移动。由于羰基与苯环共轭,其?电子的离域增大,使羰基的双键性减弱,伸缩力常数减小,故羰基伸缩振动频率降低,其吸收峰向低波数方向移动。

以脂肪酮与芳香酮比较便可说明。

8、如何利用红外吸收光谱区别烷烃、烯烃及炔烃?

-1-1 ass烷烃主要特征峰为?C?H,?CH,?CH,?CH,其中νC-H峰位一般接近3000cm又低于3000cm。

332烯烃主要特征峰为??C?H,?C?C,??C?H,其中ν=C-H峰位一般接近3000cm-1又高于3000cm-1。νC=C峰位约在1650 cm-1。??C?H就是烯烃最具特征的峰,其位置约为1000-650 cm-1。

炔烃主要特征峰为??C?H,?C?C,??C?H,其中??C?H峰位在3333-3267cm-1。?C?C峰位在2260-2100cm-1,就是炔烃的高度特征峰。

9、如何在谱图上区别异丙基及叔丁基?

9

分析化学课后习题答案

s当两个或三个甲基连接在同一个C上时,则吸收峰?CH分裂为双峰。如果就是异丙基,

3双峰分别位于1385 cm-1与1375 cm-1左右,其峰强基本相等。如果就是叔丁基,双峰分别位于

1365 cm-1与1395 cm-1左右,且1365 cm-1峰的强度约为1395 cm-1的两倍。 10、如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定:

芳氢伸缩振动(?=C-H),3100~3000cm-1 (通常有几个峰) 泛频峰2000~1667cm-1

苯环骨架振动(?c=c),1650-1430 cm-1,~1600cm-1及~1500cm-1 芳氢面内弯曲振动(β=C-H),1250~1000 cm-1 芳氢面外弯曲振动(? =C-H),910~665cm-1

11.简述傅立叶变换红外光谱仪的工作原理及傅立叶变换红外光谱法的主要特点。

傅里叶变换红外光谱仪就是通过测量干涉图与对干涉图进行快速Fourier变换的方法得到红外光谱。它主要由光源、干涉仪、检测器、计算机与记录系统组成。同色散型红外光谱仪比较,在单色器与检测器部件上有很大的不同。由光源发射出红外光经准直系统变为一束平行光束后进人干涉仪系统,经干涉仪调制得到一束干涉光,干涉光通过样品后成为带有样品信息的干涉光到达检测器,检测器将干涉光讯号变为电讯号,但这种带有光谱信息的干涉信号难以进行光谱解析。将它通过模/数转换器(A/D)送入计算机,由计算机进行傅里叶变换的快速计算,将这一干涉信号所带有的光谱信息转换成以波数为横坐标的红外光谱图,然后再通过数/模转换器(D/A)送入绘图仪,便得到与色散型红外光谱仪完全相同的红外光谱图。 傅里叶变换红外光谱法的主要特点:

(1)灵敏度高,样品量可少到10-9~10-11g。

(2)分辨率高,波数准确度一般可达0、5cm-1,有的可达0、005 cm-1。 (3)测定的光谱范围宽,可达10000~10 cm-1。

(4)扫描速度快,一般在1s内即可完成全光谱范围的扫描,比色散型仪器提高数百倍。 12、特征区与指纹区就是如何划分的?在光谱解析时有何作用?

习惯上4000-1300cm-1区间称为特征频率区,简称特征区。特征区的吸收峰较硫,易辨认。此区间主要包括:含有氢原子的单键,各种三键及双键的伸缩振动的基频峰,还包括部分含氢键的面内弯曲振动的基频峰。

1300-400 cm-1的低频区称为指纹区。此区域所出现的谱带起源于各种单键的伸缩振动,以及多数基团的弯曲振动。此区域的光谱,犹如人的指纹,如两个人的指纹不可能完全相同一样,两个化合物的红外光谱指纹区也不相同。两个结构相近的化合物的特征频率区可能大同小异,只要它们的化学结构上存在着细小的差别,指纹区一艇就有明显的不同。

特征区在光谱解析中主要解决:化合物具有哪些官能团;确定化合物就是芳香族、脂肋族、饱与或不饱与化台物。

指纹区在光谱解析中主要解决:指纹区的许多吸收峰与特征峰相关,可以作为化合物含有某一基团的旁证;可以确定化合构的细微结构。如芳环上的取代位置,判别几何异构体等。 13、正确解析红外光谱必须遵循哪些原则?

(1)特征频率区寻找特征峰,如ν O-H , ν N-H ,ν C=O (2)寻找对应的相关吸收峰,确定出存在的官能团 (3)参考被测样品各种数据,初步判断化合物结构 (4)最后查阅标准谱图进行比较、核实 14.试用红外吸收光谱区别羧酸、酯、酸酐。

羧酸的特征吸收峰为vOH、vC=O及?OH峰。vOH(单体)~3550 cm-1(尖锐),vOH (二聚

10

分析化学课后习题答案

体)3400~2500(宽而散),vC=O(单体)1760 cm-1 (S),vasC=O (二聚体)1710~1700 cm-1 (S)。羧酸的?OH峰位在955~915 cm-1范围内为一宽谱带,其形状较独特。

酯的特征吸收峰为vC=O、vc-o-c峰,具体峰位值就是:vC=O~1735cm-1 (S);vc-o-c1300~1000cm-1 (S)。vasc-o-c峰的强度大而宽就是其特征。

酸酐的特征吸收峰为vasC=O、vsC=O双峰。具体峰位值就是:vasC=O1850~1800 cm-1(s)、vsC=O1780~1740 cm-1 (s),两峰之间相距约60 cm-1,这就是酸酐区别其它含羰基化合物主要标志。

15、解析红外光谱的顺序就是什么?为什么?

为防止片面利用某特征峰来确定官能团而出现“误诊”,遵循四先、四后步骤:先特征(区)、后指纹(区);先最强(峰)、后次强(峰);先粗查、后细查;先否定、后肯定的顺序。

16.某物质分子式为C10H10O。测得红外吸收光谱如图(P260)。试确定其结构,并给出峰归属。

U=(2+2*10-10)/2=6可能含有苯环 波数 3320 2985 2165 1600,1460 1450 1400 1230 1092 771 704 归属 羟基ν(O-H) 甲基伸缩振动νas(CH3) ν(C≡O) 芳环骨架C=C伸缩振动ν(C=C) 甲基变形振动δas(CH3) ?(OH) 叔丁基νC-C ν(C-O) 芳环碳氢变形伸缩振动? =C-H) 环变形振动δs(环) 根据以上分析,可知其结构

结构信息 O-H CH3 C≡O 芳环 -CH3 -OH CCH3 C-O 芳环单取代 OHCCCHCH3

17.某未知物的分子式为C7H9N,测得其红外吸收光谱如图(P260),试通过光谱解析,推断其分子结构。

11

分析化学课后习题答案

U=(2+2*7+1-9)/2=4 可能含有苯环 波数 3520,3430,3290 3030 2925 1622 1588;1494 1471 1380 1303,1268 748 归属 胺ν(-NH) 芳环碳氢伸缩振动ν(AR-H) 甲基伸缩振动νas(CH3) 伯胺面内弯曲β(NH) 芳环骨架C=C伸缩振动ν(C=C) 甲基变形振动δas(CH3) 甲基变形振动δs(CH3) 胺ν(-C-N) 芳环碳氢变形伸缩振动? =C-H) 根据以上分析,可知其结构

NH2结构信息 -NH2 AR-H CH3 -NH2 芳环 -CH3 -CH3 芳环临二取代

18.某未知物的分子式为C10H12O,试从其红外光谱图(P261)推出其结构。

CH3

U=(2+2*7+1-9)/2=4 可能含有苯环 波数 3060,3030 2960,2870 2820,2720 归属 芳环碳氢伸缩振动ν(AR-H) 甲基伸缩振动νas(CH3) νC-H(O) 结构信息 AR-H CH3 -CHO 12