(1)求点A,B的坐标;
(2)当点D落在直线AB上时,直线CD与OA相交于点E,△COD和△AOB的重叠部分为△ODE(图①).求证:△ODE∽△ABO;
(3)除了(2)中的情况外,是否还存在△COD和△AOB的重叠部分与△AOB相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;
(4)当α=30°时(图②),CD与OA,AB分别相交于点P,M,OD与AB相交于点N,试求△COD与△AOB的重叠部分(即四边形OPMN)的面积.
21.(韶关)如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,AB=2,直线
与坐标轴交于D、E.设M是AB的中点,P是线段DE上的动点. (1)求M、D两点的坐标;
(2)当P在什么位置时,PA=PB求出此时P点的坐标;
(3)过P作PH⊥BC,垂足为H,当以PM为直径的⊙F与BC相切于点N时,求梯形PMBH的面积.
22.(衢州)如图,点B1(1,y1),B2(2,y2),B3(3,y3)…,Bn(n,yn)(n是正整数)依次为一次函数y=x+
的图象上的点,点A1(x1,0),A2(x2,0),A3(x3,0),…,
An(xn,0)(n是正整数)依次是x轴正半轴上的点,已知x1=a(0<a<1),△A1B1A2,△A2B2A3,△A3B3A4…△AnBnAn+1分别是以B1,B2,B3,…,Bn为顶点的等腰三角形. (1)写出B2,Bn两点的坐标;
(2)求x2,x3(用含a的代数式表示);分析图形中各等腰三角形底边长度之间的关系,写出你认为成立的两个结论;
第 9 页 共 71 页
(3)当a(0<a<1)变化时,在上述所有的等腰三角形中,是否存在直角三角形?若存在,求出相应的a的值;若不存在,请说明理由.
23.(黔东南州)某商厦试销一种成本为50元/件的商品,规定试销时的销售单价不低于成本,又不高于80元/件,试销中销售量y(件)与销售单价x(元/件)的关系可近似的看作一次函数(如图).
(1)求y与x的关系式;
(2)设商厦获得的毛利润(毛利润=销售额﹣成本)为s(元),则销售单价定为多少时,该商厦获利最大,最大利润是多少?此时的销售量是多少件?
24.(牡丹江)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴
2
的负半轴和正半轴上,OB,OC的长分别是方程x﹣4x+3=0的两根(OB<OC). (1)求B,C两点的坐标;
(2)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O、P、C、Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由;
(3)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,∠MCD=45°,求直线AD的解析式.
第 10 页 共 71 页
25.(梅州)如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长. (1)求y与x的函数关系式,并求出x,y的取值范围; (2)当PQ∥AC时,求x,y的值;
(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.
26.(聊城)某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分
22
别有同种草皮1608m和1200m出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表: 公园A 公园B 路程(千米) 运费单价(元) 路程(千米) 运费单价(元) 甲地 30 乙地 22 0.25 0.3 32 30 0.25 0.3 (注:运费单价指将每平方米草皮运送1千米所需的人民币)
(1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m) (2)请设计出总运费最省的草皮运送方案,并说明理由.
27.(佳木斯)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x﹣4x+3=0的两根(OB<OC). (1)求点B,点C的坐标;
(2)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,求直线MD的解析式;
(3)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O,P,C,Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.
2
2
第 11 页 共 71 页
28.(济南)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.
(1)求过点A,B的直线的函数表达式;
(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.
29.(黑龙江)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA
22
<OB)的长分别是关于x的一元二次方程x﹣4mx+m+2=0的两根,C(0,3),且S△ABC=6 (1)求∠ABC的度数;
(2)过点C作CD⊥AC交x轴于点D,求点D的坐标;
(3)在第(2)问的条件下,y轴上是否存在点P,使∠PBA=∠ACB?若存在,请直接写出直线PD的解析式;若不存在,请说明理由.
30.(哈尔滨)如图,梯形ABCD在平面直角坐标系中,上底AD平行于x轴,下底BC交y轴于点E,点C(4,﹣2),点D(1,2),BC=9,sin∠ABC=. (1)求直线AB的解析式;
第 12 页 共 71 页