3.(1)在七进制下计算:(326)7+(402)7、(326)7×(402)7; (2)在十六进制下计算:(35E6)16+(78910)16.
4.算式(4567)m+(768)m = (5446)m是几进制数的加法?(534)n×(25)n = (16214)n是几进制数的乘法?
5.自然数x=(abc)10化为二进制后是一个7位数(1abcabc)2.请问:x等于多少?
6.一个自然数的七进制表达式是一个三位数,它的九进制表达式也是一个三位数,而且这两个三位数的数码顺序恰好相反。这个自然数的十进制表示是多少?
7、某出版社在印刷一本数学科普书的时候,发现他们印刷的页码每一页都只含数字0至5,即从第一页开始这本书的页码依次为1,2,3,4,5,10,11,12,13.14,15,20,….那么这本书的第365页的页码是多少?
8、如果[x]?3,[y]?0,[z]?1.求:
(1) [x - y]的所有可能值;(2)[x + y - z]的所有可能值.
9、计算(结果用л表示)
(1){{?}??}?{[?]??}?[{?}??]?[[?]??];
10、计算:[
11、解方程(1)x?2{x}?3[x];(2)3x?5[x]?49?0.
12、解方程[]?[]?[]?[ 超越篇
(2)[10?2?]?[?]?{?}.
23?123?223?3923?40]?[]???[]?[]? 41414141x1x2x6x]?110,其中x是整数。 101.a、b是自然数,a进制数(47)a和易进制数(74)a相等,a + b的最小值是多少?
2.现有一个百位为3的三位数(十进制),把它分别化成九进制的数和八进制的数后,仍然是三位数.且首位数字分别为4和5.这样的三位数中最大的是多少?最小的是多少?一共有多少个?
3.在十进制的表示中,三个依次增大的两位数恰构成公差为6的等差数列;而在五进制的表示中,这三个数的数字和是依次减少的.符合这样要求的等差数列有多少个?
4.现有六个筹码,上面分别标有数值:1,3,9,27,81,243.任意搭配这些筹码(也可以只选择1个筹码)可以得到多少个不同的和?将这些和加起来,总和为多少?将这些和从小到大排列起来,第45个是多少?
5.计算: [13?113?213?8213?83]?[]???[]?[]? 2121212112222106.计算: []?[]?[]???[]?
3333
7.一副双色牌中,红、黑两种颜色各有12张牌,每种颜色的牌上分别写着l,2,4,8,16,…,2048这12个数.小梁从中任意抽取一些牌,计算抽出的牌面上所有数的和.
(1)若算出的和为2008,则小梁最多可能抽取了多少张牌?(2)若算出的和为183,则小梁共有多少种抽取牌的方法?(3)如果小梁有3种抽牌的方法使得和为某个正整数n,求,z的值.
12223220082],[],[],?,[]8.(1)在[2008200820082008中共出了多少个互不相同的数? 2008200720061],[],[],?,[]中共出现了多少个互不相同的数? (2)在[1232008
第13讲应用题综合一
内容概述
与生话相关的形式多样的应用题,需要结合实际情况具体分析;条件比较隐藏,数量关系较为复杂的
应用题;具有不确定性,需要进行简单判断的应用题.
典型问题
兴趣篇
1.一个骗子到商店买了5元的东西,他付给店员50元钱,然后店员把剩下的钱找给了他;这时他又说自己有零钱,于是给店员5元的零钱,并且要回了开始给出的50元,请问:这个骗子一共骗了多少钱?
2.在水平地面上匀速行驶的拖拉机速度是每秒5米,已知拖拉机前轮直径0.8米,后轮直径1.25米.设某一时刻两轮上与地面的接触点为A和B,那么经过多少秒后,A和B再次同时与地面接触?(圆周率取近似值3)
3.一个容器装了
3的水,现有大、中、小三种小球,第一次把1个中球沉入水中;第二次将中球取出,42.已知每次从容器中溢出的水量情况是:第一次是第三次的一半;第三次是9再把3个小球沉入水中;第三次取出所有的小球,再把1个大球沉入水中.最后将大球从水中取出,此时容器内剩下的水是最开始的
第二次的一半.求大、中、小三球的体积比,
4.星期天早晨,冬冬发现闹钟因电池能量耗尽停了.他换上新电池,估计了一下时间,把闹钟的时间调到8:00.然后冬冬离家前往天文馆.他到达天文馆时,看到天文馆的标准时钟显示的时间是9:15.一个半小时后,冬冬从天文馆出发以同样的速度回家,到家时看到闹钟显示的时间是11:20,这时冬冬应该把闹钟调到几点几分时间才是准确的?
5.从甲地到乙地有两种方法:①立即步行前往;②等待公共汽车坐车前往.表13-1中列出了从甲地到乙地所用的最短时间随两地之间距离的变化情况,已知步行速度、汽车速度以及等待公车的时间都是固定的.请问:当两地相距24千米的时候,从甲地到达乙地的最短时间是多少分钟?
6.某种商品由于实行进口限制,在买卖时会征收高达40%的税.比如甲以100元的价格卖出该商品,在收到买方100元货款之后,需要付给国家40元的税;乙以100元的价格买人该商品时,则在付给卖方100元货款后,还需要再付给国家40元的税.现在甲以45万元的总价买入一批该商品,然后再转手卖给乙,在整个买卖交易过程中,甲还自己出钱支付了30000元的运费(该费用不征税).为了让这笔买卖不亏本,甲至少应以多少万元的价格卖给乙?如果以此价格成交,那么从头到尾国家从甲、乙身上收取了多少万元的税?
7.一条双向铁路上有11个车站,相邻两站都相距7千米.从早晨7时开始,有18列货车由第11站顺次发出,每隔5分钟发出一列,都驶向第1站,速度都是每小时60千米.早晨8时,由第1站发出一列客车,向第11站驶去,时速是100千米.在到达终点站前,货车与客车都不停靠任何一站,问:在哪两个相邻站之间,客车能与3列货车先后相遇?
8.有一只小蚂蚁在一根弹性充分好的橡皮筋上的A点,以每秒1厘米的速度向前爬行,从小蚂蚁开始爬行的时候算起,橡皮筋在2秒后、4秒后、6秒后、8秒后、10秒后??都均匀地伸长为原来的2倍.那么在开始爬行9秒后,这只小蚂蚁离A点多少厘米?
9.有一座塔,从地面到塔顶要通过塔内部的螺旋形通道上去,如图13-1,通道的长度是420米,共转了三圈半.小明从P点以每分钟60米的速度下塔,小亮从Q点以每分钟40米的速度上塔,如果两人同时出发,那么刚好形成正上方与正下方的关系共有多少次?分别是出发之后几分钟?(两人相遇不算)
10.阿奇读一本故事书,如果他第一天读25页,以后每天都比前一天多读5页,那么到最后一天时,还剩下47页;如果他第一天读40页,以后每天都比前一天多读5页,那么到最后一天时,还剩下37页.请问:这本故事书最少共有多少页?
拓展篇
1.甲、乙、丙、丁四个人去餐馆大吃了一顿,因为甲的钱包落在宿舍,所以饭钱就由乙、丙、丁三个人出.回到宿舍以后,甲找到了钱包,想要把钱还给其他三人,结果乙摆摆手说:“不用了,我反正还欠你4块钱,正好抵了.”丙说:“你把我那份给丁吧,我正好欠他9块钱.”于是甲只付钱给丁,给了31元.那么在餐馆付饭钱的时候,乙、丙、丁分别付了多少元?
2.2008年3月1日起,我国实行新的税率标准,费用扣除标准调高为2000元/月.表13-2是工资、薪金所得项目税率表:
表中“全月应纳税所得额”是指从月工资、薪金收入中减去2000元后的余额,它与相应税率的乘积就是应交的税款数.则在这种税率实行期间:
(1)王先生某个月的工资、薪金收入为4480元,该月份他交纳的税款是多少元?
(2)张先生某月份交纳了1165元个人所得税,该月份张先生工资、薪金收入是多少元?
3.有大小一样,张数相同的黑白两种颜色的正方形纸片,阿奇先用白色纸片拼成中间没有缝隙的长方形,然后用黑色纸片围绕已经拼成的白色长方形继续拼成更大的长方形,之后又用白色纸片拼下去,??,这样重复拼.当阿奇用黑色纸片拼过5次以后,、黑、白纸片正好用完.请问:黑色纸片至少有多少张?
4.有一辆杂技自行车,前轮的半径是411分米,后轮的半径是3分米,那么当后轮转的圈数比前轮多11310圈的时候,这辆车前进了多少米?(圆周率取近似值3.14.)
5.两个农妇共带100个鸡蛋到市场上去卖,第一个农妇带的鸡蛋比第二个农妇少,但两人所卖的总钱数相同.第一个农妇对第二个农妇说:“我要有你那么多鸡蛋,按我的价钱卖就能把它们卖180元,”第二个农妇回答说:“我要有你那么多的鸡蛋,按我的价钱卖只能把它们卖80元.”请问:两个农妇各有多少个鸡蛋?
6.张先生向商店订购了每件定价100元的某种商品80件.张先生对商店经理说:“如果你肯减价,那么每减价1元,我就多订购4件,”经理算了一下,若减价1%,由于张先生多订购,获得的利润反而比原来多52元.那么按张先生的要求,商店最多可以获得多少元利润?
7.比赛用的足球是由黑、白两色皮子缝制的,其中黑色皮子为正五边形,白色皮子为正六边形,并且黑色正五边形与白色正六边形的边长相等.缝制的方法是:每块黑色皮子的5条边分别与5块白色皮子的边缝在一起;每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其他白色皮子的边缝在一起.如果一个足球表面上共有12块黑色正五边形皮子,那么,这个足球应有白色正六边形皮子多少块?
8.如图13 – 2所示,相距15厘米的两条平行线a和b之间,有直角三角形A和长方形B.直角三角形A沿着直线a以每秒1厘米的速度向右运动,长方形B沿着直线b以每秒2厘米的速度向左运动.请问:A与B有重叠部分的时间持续多久?其中重叠部分的面积保持不变的时间有多长?