初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习
(含答案解析)
知识点:
1、对应关系:平面直角坐标系的点与有序实数对一一对应。
2、平面两条互相垂直、原点重合组成的数轴组成平面直角坐标系。 水平的数轴称为x轴或横轴,习惯上取向 右 为正方向; 竖直的数轴为y轴或纵轴,取向 上 为正方向; 两个坐标轴的交点为平面直角坐标系的 原点 。
坐标:对于平面任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限 3、三大规律
(1)平移规律:
点的平移规律 左右平移→纵坐标不变,横坐标左减右加;
上下平移→横坐标不变,纵坐标上加下减。
图形的平移规律 找特殊点 (2)对称规律
关于x轴对称→横坐标不变,纵坐标互为相反数; 关于y轴对称→横坐标互为相反数,纵坐标不变; 关于原点对称→横纵坐标都互为相反数。 (3)位置规律 各象限点的坐标符号:(注意:坐标轴上的点不属于任何一个象限) 假设在平面直角坐标系上有一点P(a,b) 第二象限 第一象限 (—,+) (+,+) 1. 如果P点在第一象限,有a>0,b>0 (横、纵坐标都大于0) 2. 如果P点在第二象限,有a<0,b>0 (横坐标小于0,纵坐第三象限 第四象限 (—,—) (+,—) 标大于0) 特征坐标: 3. 如果P点在第三象限,有a<0,b<0 (横、纵坐标都小于0) x轴上→纵坐标为0;y轴上→横坐标为0; 第一、三象限夹角平分线上→横纵坐标相等;
第二、四象限夹角平分线上→横纵坐标互为相反数。 1. 平行于横轴(x轴)的直线上的点纵坐标相同 2. 平行于纵轴(y轴)的直线上的点横坐标相同 常考题:
一.选择题(共15小题) 1.点P在第二象限,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( ) A.(﹣4,3) B.(﹣3,﹣4) C.(﹣3,4) D.(3,﹣4)
2.如图,小手盖住的点的坐标可能为( )
A.(5,2) B.(﹣6,3) C.(﹣4,﹣6) D.(3,﹣4) 3.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )
A.(3,2) B.(3,1) C.(2,2) D.(﹣2,2)
4.在平面直角坐标系中,点(﹣1,m2+1)一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为( ) A.(2,9) B.(5,3) C.(1,2) D.(﹣9,﹣4) 6.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( )
A.2 B.3 C.4 D.5
7.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( ) A.(﹣3,0) B.(﹣1,6) C.(﹣3,﹣6) D.(﹣1,0)
8.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为( ) A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4)
9.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )
A.(5,4) B.(4,5) C.(3,4) D.(4,3)
10.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是( ) A.(2,5) B.(﹣8,5) C.(﹣8,﹣1) D.(2,﹣1)
11.在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值围为( ) A.﹣1<m<3 B.m>3 C.m<﹣1 D.m>﹣1
12.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
13.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ) A.(66,34) B.(67,33) C.(100,33) D.(99,34)
14.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在( )
A.家 B.学校 C.书店 D.不在上述地方
15.如图为小杰使用手机的通讯软件跟小智对话的纪录.
根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?( )
A.向北直走700公尺,再向西直走100公尺 B.向北直走100公尺,再向东直走700公尺 C.向北直走300公尺,再向西直走400公尺 D.向北直走400公尺,再向东直走300公尺
二.填空题(共10小题)
16.在平面直角坐标系中,对于平面任一点(m,n),规定以下两种变换: (1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1); (2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1) 按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= . 17.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是 .
18.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是 .
19.若第二象限的点P(x,y)满足|x|=3,y2=25,则点P的坐标是 . 20.如图的围棋盘放在某个平面直角坐标系,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是 .
21.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是 .
22.如图,这是市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.
则椒江区B处的坐标是 .
23.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为 (用n表示).
24.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是 .
25.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为 .
三.解答题(共15小题)
26.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2). (1)写出点A、B的坐标: A( , )、B( , ) (2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′( , )、B′( , )、C′( , ).