5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2
y1(n)= x(n)¢Þh(n)= {-13,4,-3,13,-4,3}
(3)ÒòΪ8>(5+3-1),
ËùÒÔy3(n)= x(n)¢àh(n)£½{-15,4,-3,13,-4,3,2£¬0} y3(n)Óëy(n)·ÇÁ㲿·ÖÏàͬ¡£
Áù£®Óô°º¯ÊýÉè¼ÆFIRÂ˲¨Æ÷ʱ£¬Â˲¨Æ÷ƵÆ×²¨¶¯ÓÉʲô¾ö¶¨ _____________£¬Â˲¨Æ÷ƵÆ×¹ý¶É´øÓÉʲô¾ö¶¨_______________¡£
½â£º´°º¯ÊýÅÔ°êµÄ²¨¶¯´óС£¬´°º¯ÊýÖ÷°êµÄ¿í¶È
Æß£®Ò»¸öÒò¹ûÏßÐÔʱ²»±äÀëɢϵͳ£¬ÆäÊäÈëΪx[n]¡¢Êä³öΪy[n]£¬ÏµÍ³µÄ²î·Ö·½³ÌÈçÏ£º
y£¨n£©-0.16y(n-2)= 0.25x(n-2)£«x(n) (1) ÇóϵͳµÄϵͳº¯Êý H(z)=Y(z)/X(z); (2) ϵͳÎȶ¨Âð?
(3) »³öϵͳֱ½ÓÐÍIIµÄÐźÅÁ÷ͼ; (4) »³öϵͳ·ùÆµÌØÐÔ¡£ ½â£º(1)·½³ÌÁ½±ßͬÇóZ±ä»»£º
Y(z)-0.16zY(z)= 0.25zX(z)£«X(z)
-2
-2
Y(z)1?0.25z?2
H(z)??X(z)1?0.16z?2(2)ϵͳµÄ¼«µãΪ£º0.4ºÍ£0.4,ÔÚµ¥Î»Ô²ÄÚ£¬¹ÊϵͳÎȶ¨¡£ (3)
x(n)z-1y(n)0.16z-10.25
5
(4)
ImH(ej?)j0.5-0.40.40-j0.52.7Re????20.340?2??
°Ë£®Èç¹ûÐèÒªÉè¼ÆFIRµÍͨÊý×ÖÂ˲¨Æ÷£¬ÆäÐÔÄÜÒªÇóÈçÏ£º (1)×è´øµÄË¥¼õ´óÓÚ35dB, (2)¹ý¶É´ø¿í¶ÈСÓÚ?/6.
ÇëÑ¡ÔñÂú×ãÉÏÊöÌõ¼þµÄ´°º¯Êý£¬²¢È·¶¨Â˲¨Æ÷h(n)×îС³¤¶ÈN
´°º¯Êý¾ØÐκºÄþººÃ÷²¼À³¿ËÂüÖ÷°ê¿í¶È¹ý¶É´ø¿í4?/N8?/N8?/N12?/N1.8?/N6.2?/N6.6?/N11?/NÅÔ°ê·åֵ˥¼õ(dB)-13-31-41-57×è´ø×îС˥¼õ(dB)-21-44-53-74½â£º¸ù¾ÝÉÏ±í£¬ÎÒÃÇÓ¦¸ÃÑ¡ÔñººÄþ´°º¯Êý£¬
8???N6N?48-1
-2
-4
-5
-6
Ê®£®ÒÑÖª FIR DFµÄϵͳº¯ÊýΪH(z)=3-2z+0.5z-0.5z£«2z-3z,ÊÔ·Ö±ð»³öÖ±½ÓÐÍ¡¢ÏßÐÔÏàλ½á¹¹Á¿»¯Îó²îÄ£ÐÍ¡£
x(n)3z-1z-1z-1z-1z-1z-1-20.5-0.52-3y(n)Ö±½ÓÐÍ
e1(n)e2(n)e3(n)e4(n)e5(n)e6(n)
6
x(n)ÏßÐÔÏàλÐÍ3-1z-1-1z-1-1z-1z-1z-1z-1y(n)
-20.5e1(n)e2(n)e3(n)
ʮһ£®Á½¸öÓÐÏÞ³¤µÄ¸´ÐòÁÐx[n]ºÍh[n]£¬Æä³¤¶È·Ö±ðΪN ºÍM£¬ÉèÁ½ÐòÁеÄÏßÐÔ¾í»ýΪy[n]=x[n]*h[n]£¬»Ø´ðÏÂÁÐÎÊÌ⣺.
(1) ÐòÁÐy[n]µÄÓÐЧ³¤¶ÈΪ¶à³¤£¿
(2) Èç¹ûÎÒÃÇÖ±½ÓÀûÓþí»ý¹«Ê½¼ÆËãy[n] £¬ÄÇô¼ÆËãÈ«²¿ÓÐЧy[n]µÄÐèÒª¶àÉٴθ´Êý³Ë·¨£¿ (3) ÏÖÓÃFFT À´¼ÆËãy[n]£¬ËµÃ÷ʵÏÖµÄÔÀí£¬²¢¸ø³öʵÏÖʱËùÐèÂú×ãµÄÌõ¼þ£¬»³öʵÏֵķ½¿òͼ£¬¼ÆËã¸Ã·½·¨ÊµÏÖʱËùÐèÒªµÄ¸´Êý³Ë·¨¼ÆËãÁ¿¡£ ½â£º(1) ÐòÁÐy[n]µÄÓÐЧ³¤¶ÈΪ£ºN+M-1£»
(2) Ö±½ÓÀûÓþí»ý¹«Ê½¼ÆËãy[n]£¬ ÐèÒªMN´Î¸´Êý³Ë·¨ (3)
²¹ÁãLµã-DFTLµã-IDFT²¹ÁãLµã-DFTÐèÒª
3Llog2L´Î¸´Êý³Ë·¨¡£
Ê®¶þ£®Óõ¹ÐòÊäÈë˳ÐòÊä³öµÄ»ù2 DIT-FFT Ëã·¨·ÖÎöÒ»³¤¶ÈΪNµãµÄ¸´ÐòÁÐx[n] µÄDFT£¬»Ø´ðÏÂÁÐÎÊÌ⣺
(1) ˵Ã÷NËùÐèÂú×ãµÄÌõ¼þ£¬²¢ËµÃ÷Èç¹ûN²»Âú×ãµÄ»°£¬ÈçºÎ´¦Àí£¿
(2) Èç¹ûN=8, ÄÇôÔÚµûÐÎÁ÷ͼÖУ¬¹²Óм¸¼¶µûÐΣ¿Ã¿¼¶Óм¸¸öµûÐΣ¿È·¶¨µÚ2¼¶ÖеûÐεĵû
r
¾à(dm)ºÍµÚ2¼¶Öв»Í¬µÄȨϵÊý(WN)¡£ (3) Èç¹ûÓÐÁ½¸ö³¤¶ÈΪNµãµÄʵÐòÁÐy1[n]ºÍy2 [n]£¬ÄÜ·ñÖ»ÓÃÒ»´ÎNµãµÄÉÏÊöFFTÔËËãÀ´¼ÆËã³ö
y1[n]ºÍy2 [n]µÄDFT£¬Èç¹û¿ÉÒԵϰ£¬Ð´³öʵÏÖµÄÔÀí¼°²½Ö裬²¢¼ÆËãʵÏÖʱËùÐèµÄ¸´Êý³Ë·¨´ÎÊý£»Èç¹û²»ÐУ¬ËµÃ÷ÀíÓÉ¡£
½â(1)NӦΪ2µÄÃÝ£¬¼´N£½2£¬£¨mΪÕûÊý£©£»Èç¹ûN²»Âú×ãÌõ¼þ£¬¿ÉÒÔ²¹Áã¡£
7
m
(2)3¼¶£¬4¸ö£¬µû¾àΪ2£¬W £¬WN (3) y[n]=y1[n]+jy2[n]
N?1
Y[k]??y[n]WNkn n?0 1Y1[k]?Yep[k]?{Y[((k))N]?Y*[((?k))N]}2
1Y[k]?Y[k]?{Y[((k))N]?Y*[((?k))N]}2op 2Ê®Èý£®¿¼ÂÇÏÂÃæ4¸ö8µãÐòÁУ¬ÆäÖÐ 0¡Ün¡Ü7£¬ÅжÏÄÄЩÐòÁеÄ8µãDFTÊÇʵÊý£¬ÄÇЩÐòÁеÄ8µãDFTÊÇÐéÊý£¬ËµÃ÷ÀíÓÉ¡£
(1) x1[n]={-1, -1, -1, 0, 0, 0, -1, -1}, (2) x2[n]={-1, -1, 0, 0, 0, 0, 1, 1}, (3) x3[n]={0, -1, -1, 0, 0, 0, 1, 1}, (4) x4[n]={0, -1, -1, 0, 0, 0, -1, -1}, ½â£º
*xo(n)??xo(N?n)??Xo(N?n)0
N
2
*xe(n)?xe(N?n)?Xe(N?n)DFT[xe£¨n£©]=Re[X£¨k£©] DFT[x0£¨n£©]=jIm[X£¨k£©]
x4[n]µÄDFTÊÇʵÊý , ÒòΪËüÃǾßÓÐÖÜÆÚÐÔ¹²éî¶Ô³ÆÐÔ£»x3[n] µÄDFTÊÇÐéÊý , ÒòΪËü¾ßÓÐÖÜÆÚ
8
ÐÔ¹²éî·´¶Ô³ÆÐÔ
Ê®ËÄ. ÒÑ֪ϵͳº¯ÊýH(z)?2?0.25z?1£¬ÇóÆä²î·Ö·½³Ì¡£
1?0.25z?1?0.3z?2½â£º
H(z)?2?0.25z?11?0.25z?1?0.3z?2 Y(z)2?0.25z?1X(z)?1?0.25z?1?0.3z?2 Y(z)(1?0.25z?1?0.3z?2)?X(z)(2?0.25z?1)
y(n)?0.25y(n?1)?0.3y(n?2)?2x(n)?0.25x(n?1)Ê®Îå.ÒÑÖªY(z)(1?3z?1?1z?2)?X(z)(1?z?148)£¬»ÏµÍ³½á¹¹Í¼¡£ ½â£º
Y(z)(1?3z?1?1z?2)?X(z)(1?z?148) Y(z)1?z?1H(z)?X(z)?1?0.75z?1?0.125z?2
?1?1?z(1?0.5z?1)(1?0.25z?1)?61?0.5z?1?51?0.25z?1Ö±½ÓÐÍI£º Ö±½ÓÐÍII£º
x[n]x[n]y[ny[]n]Z-1z-1Z-10.750.75-0.125z-0.125-1Z-1
¼¶ÁªÐÍ£º
x[n]y[n]Z-1Z-10.250.5
²¢ÁªÐÍ£º
6x[n]Z-10.5y[n]-5Z-10.25
9