∴(4+x+5+y+7+9)=6, ∴x+y=11,
∴x,y中一个是5,另一个是6,
∴这组数据的方差为[(4﹣6)2+2(5﹣6)2+(6﹣6)2+(7﹣6)2+(9﹣6)2]=; 故答案为:.
【点评】此题考查了众数、平均数和方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2];解答本题的关键是掌握各个知识点的概念.
16.(5分)在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A的对应点C的坐标是 (﹣1,2)或(1,﹣2) . 【分析】根据位似变换的性质、坐标与图形性质计算.
【解答】解:以原点O为位似中心,把这个三角形缩小为原来的,点A的坐标为(﹣2,4),
∴点C的坐标为(﹣2×,4×)或(2×,﹣4×),即(﹣1,2)或(1,﹣2), 故答案为:(﹣1,2)或(1,﹣2).
【点评】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k. 17.(5分)若正六边形的内切圆半径为2,则其外接圆半径为
.
【分析】根据题意画出图形,利用正六边形中的等边三角形的性质和三角函数求解即可. 【解答】解:如图,连接OA、OB,作OG⊥AB于G; 则OG=2,
∵六边形ABCDEF正六边形, ∴△OAB是等边三角形, ∴∠OAB=60°, ∴OA=
=
=
,
∴正六边形的内切圆半径为2,则其外接圆半径为.
故答案为:.
【点评】本题考查了正六边形和圆、等边三角形的判定与性质;熟练掌握正多边形的性质,证明△OAB是等边三角形是解决问题的关键.
18.(5分)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为 x>3 .
【分析】根据直线y=kx+b(k<0)经过点A(3,1),正比例函数y=x也经过点A从而确定不等式的解集.
【解答】解:∵正比例函数y=x也经过点A, ∴kx+b<x的解集为x>3, 故答案为:x>3.
【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.
19.(5分)如图,?ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=写所有正确结论的序号)
:7;④FB2=OF?DF.其中正确的结论有 ①③④ (填
【分析】①正确.只要证明EC=EA=BC,推出∠ACB=90°,再利用三角形中位线定
理即可判断.
②错误.想办法证明BF=2OF,推出S△BOC=3S△OCF即可判断. ③正确.设BC=BE=EC=a,求出AC,BD即可判断. ④正确.求出BF,OF,DF(用a表示),通过计算证明即可. 【解答】解:∵四边形ABCD是平行四边形, ∴CD∥AB,OD=OB,OA=OC, ∴∠DCB+∠ABC=180°, ∵∠ABC=60°, ∴∠DCB=120°, ∵EC平分∠DCB,
∴∠ECB=∠DCB=60°, ∴∠EBC=∠BCE=∠CEB=60°, ∴△ECB是等边三角形, ∴EB=BC, ∵AB=2BC, ∴EA=EB=EC, ∴∠ACB=90°, ∵OA=OC,EA=EB, ∴OE∥BC,
∴∠AOE=∠ACB=90°, ∴EO⊥AC,故①正确, ∵OE∥BC, ∴△OEF∽△BCF, ∴
=
=,
∴OF=OB,
∴S△AOD=S△BOC=3S△OCF,故②错误, 设BC=BE=EC=a,则AB=2a,AC=∴BD=
a,
a:a,
a=
:7,故③正确,
a,OD=OB=
=
a,
∴AC:BD=∵OF=OB=
∴BF=a,
a?(
a+
a)=a2,
∴BF2=a2,OF?DF=
∴BF2=OF?DF,故④正确, 故答案为①③④.
【点评】本题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于填空题中的压轴题. 20.(5分)观察下列一组数: a1=,a2=,a3=,a4=
,a5=
,…,
(用含n
它们是按一定规律排列的,请利用其中规律,写出第n个数an= 的式子表示)
【分析】观察分母,3,5,9,17,33,…,可知规律为2n+1;观察分子的,1,3,6,10,15,…,可知规律为
,即可求解;
【解答】解:观察分母,3,5,9,17,33,…,可知规律为2n+1, 观察分子的,1,3,6,10,15,…,可知规律为
,
∴an=故答案为
=;
;
【点评】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键. 三、解答题:本大题共6个小题,满分74分。解答时请写出必要的演推过程。 21.(10分)先化简,再求值:(
﹣
)÷
,其中x是不等式组
的整数解.
【分析】先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求出x的整数