7、反应类型 20、小数点位数 8、终点法零点读数 21、底物耗尽 9、样本量与稀释水量 22、线性度
10、试剂量与稀释水量 23、试剂吸光度上限与下限 11、样本空白 24、线性范围 12、孵育时间 25、参考范围 13、延迟时间 26、等等等等
全自动生化分析仪-结构篇
作者:coolautumn
全自动生化分析仪是目前医院检验科最常用也是最大型的分析设备,由于生化工作在检验工作中的重要地位,对生化分析仪的需求相当的高,自50年代全自动生化分析仪出现以来,各种全自动生化分析仪层出不穷,现在在国内各级医院充斥着美国,日本,法国,意大利等各国各类的全自动生化分析仪(好象没有中国的:-( ),其中以日本日立、奥林巴斯,美国贝克曼、杜邦最多,令人眼花瞭乱。
其实,全自动生化分析仪的原理并不复杂,近20年来只不过是在自动化程度和功能扩展上下功夫而已。现就全自动生化分析较系统的发表一下见解,望方家指证。
全自动生化分析仪是以分光光度法为基础而发展起来的,至今分光光度法也是其核心方法。全部的生化分析仪其实都是如图构成:
光电比色部分是整个仪器的核心,进样系统是分析的前提,控制单元是分析的保证,数据处理系统是功能的扩展。
从全自动生化分析仪的发展来看,曾经以进样和反应方式分为连续流动式,离心式,和分立式三大类。
连续流动式的原理近式所谓的“半自动生化分析仪”(不如叫自动比色仪来的恰当),固定比色杯,用清洗减少互染率。优点:结构简单,价格便宜,无比色
杯的吸光性差异。缺点:1 互染率高,标本间,试剂间相互影响不可避免。2 每次使用后需要长时间冲洗才能进行下一次测定,速度极慢。只有全自动生化分析最初的产品使用,随着离心式的产生而被淘汰,目前已经绝迹。
离心式全自动生化分析仪的出现是一大进步,其原理是:使用不同的反应比色杯减小互染,无需测定中清洗反应池加快了速度,样品和试剂分离加样,依靠旋转制动产生的离心力使其混合反应,批量检测。其优点突出:1 避免了互染,提高了比色的准确性(虽然使用不同比色杯存在吸光度差,但因为工艺的进步,同质比色杯的差异已很小,相较互染的影响小得多);2 测试中不用清洗反应比色杯,批量同时反应,大大减少了时间,提高了分析速度。缺点:1 加样,比色分离,自动化程度低;2 按项目检测,不能按样本检测,使用不灵活;3 使用不同比色杯存在吸光度差;4 因为分离加样,样本和试剂上限受限,同时因为靠制动离心力混均对试剂的下限有严格限制,样本试剂比范围狭窄;5 因要离心,对比浊分析有影响(特别是温控差的) 6 温控与反应分别,温控不能反映反应温度。离心式的出现终结了连续流动式,在70-80年代占据了相当市场,即使在分立式出现后,因为初期分立式的速度制约,离心式仍有一定市场。但当分立式技术成熟以后全面超越离心式,离心式已渐消亡。
分立式的原理:同样使用不同的反应比色杯,但样本和试剂同时加入反应比色杯即时混合,即时检测。能以样本为单位测定(离心式以项目为单位)因此使用灵活,同时不存在样本试剂比范围狭窄的缺陷以及不用离心也使得应用范围宽。温控也是测定反应体系温度。总之,分立式克服了离心式的大部分致命缺陷,在初期因为离心式是多样本同时反应节省了时间,因而速度较分立式快。但现在因技术的进步,分立式的速度已经提了上来,而在高速分析的时候离心式加样与测定分离的缺点反成了速度的瓶颈因此离心式就速度而言也趋于落后,因此分立式已经全面取代了离心式,目前离心式只有少数二手机在流通。
自动生化分析仪基本结构及工作原理
一、基本结构
(一)按照反应装置的结构,自动生化分析仪主要分为流动式(Flow system)、分立式(Discrete system)两大类。
1.流动式 指测定项目相同的各待测样品与试剂混合后的化学反应在同一管道流动的过程中完成。这是第一代自动生化分析仪。
2.分立式 指各待测样品与试剂混合后的化学反应都是在各自的反应杯中完成。其中有几类分支。
(1)典型分立式自动生化分析仪。此型仪器应用最广。
(2)离心式自动生化分析仪,每个待测样品都是在离心力的作用下,在各自的反应槽内与试剂混合,完成化学反应并测定。由于混合,反应和检测几乎同时完成,它的分析效率较高。
3.袋式自动生化分析仪是以试剂袋来代替反应杯和比色杯,每个待测样品在各自的试剂袋内反应并测定。
4.固相试剂自定生化分析仪(亦称干化学式自动分析仪) 是将试剂固相于胶片或滤纸片等载体上,每个待测样品滴加在相应试纸条上进行反应及测定。操作快捷、便于携带是它的优点。
(二)典型分立式自动生化分析仪基本结构 1.样品(Sample)系统
样品包括校准品、质控品和病人样品。系统一般由样品装载、输送和分配等装置组成。
样品装载和输送装置常见的类型有:
(1)样品盘(Sample disk),即放置样品的转盘有单圈或内外多圈,单独安置或与试剂转盘或反应转盘相套合,运行中与样品分配臂配合转动。有的采用更换式样品盘,分工作和待命区,其中放置多个弧形样品架(Sector)作转载台,仪器在测定中自动放置更换,均对样品盘上放置的样品杯或试管的高度、直径和深度有一定要求,有的需专用样品杯,有的可直接用采血试管。样品盘的装载数,以及校准品、质控品、常规样品和急诊样品的装载数,一般都是固定的。这些应根据工作需要选择。
(2)传动带式或轨道式进样 即试管架(Rack)不连续,常为10个一架,靠步进马达驱动传送带,将试管架依次前移,再单架逐管横移至固定位置,由样品分配臂采样。
(3)链式进样试管固定排列在循环的传动链条上,水平移动到采样位置,有的仪器随后可清洗试管。
分配加样装置大都由注射器、步进马达或传动泵、加样臂和样品探针等组成,①注射器(syrine unit)。根据注射器直径和活塞移动距离的多少,定量吸取样品或试剂。它的精度决定加样的精度,一般可精确到1微升。注射器漏液时,首先考虑是否探针堵塞,其次是注射器活塞磨损等。有的加液系统采用容积型注射泵和数控脉冲步进马达,提高精度。②样品探引(Probe)与加样臂相联,直接吸取样品。探针均设有液面感应器,防止探针损伤和减少携带污染。有的设有阻塞检测报警系统当探针样品中的血凝块等物质阻塞时.仪器会自动报警冲洗探针,并跳过当前样品,对下一样品加样。有的还有智能化防撞装置遇到阻碍探针立即停止运动并报警。即使如此,它仍是非正规操作时的易损件。为了保护探针,除预先需要根据样品容器的高低、最低液面高度等进行设置外、,样品容器的规格、放置以及液面高度等设定条件不得随意改变。在某些仪器上,采样器和加液器组合在一起,加样品和加试剂或稀释液一个探针一次完成。③加样臂。连接探引,在样品杯(试剂瓶)和反应杯之间运动,完成采样和加样(加试剂)。它的运动方式,与仪器工作效率及工作寿命有一定关系。④阀门用以决定液体流动方向。⑤稀释系统。对样品进行预稀释、过后稀释或加倍,对标准原液系列稀释等。不同仪器的稀释方式有所差异,要注意识别。试剂系统亦有稀释功能:
2.试剂(Reagent)系统一般由试剂储放和分配加液装置组成。
(1)试剂仓常与试剂转盘结合在起。多数仪器将试剂仓设为冷藏室,以提高在线试剂的稳定期。
(2)分配加液装置(Dispense unit)。与样品系统的类似。,试剂探针常常可以对试剂预加温,双试剂系统的试剂2(R2)探针起始量宜较下,以便配合不同R1/R2比例的试剂。
(3)试剂瓶(Bottle)。有不同的形状及大小规格。如 COBAS MIRA PLUS仪有4、10、15、35ml等规格,瓶底呈凹形,OLYMPUS Au600仪有30和60ml两种;日立7060仪有20、50、100ml三种等规格。应根据工作量和试剂规格.考虑试剂瓶残留死体积和更换频率,合理选用。独特设计的卡式试剂盒,体积小,防蒸发,方便储存。
(4)配套试剂常有条形码,仪器设有条形码检查系统,可对试剂的种类、批号、存量、有效期和校准曲线等货剌,进行核对校验,如BeckmanCX7等。 (5)试剂瓶盖自动开关系统,更有利于试剂保存。有的仪器可在运行中添加,更换试剂,有的则须在暂停状态进行。 3.条形码(Barcode)识读系统