第一部分 地铁暗挖施工工法
工法之一:隧道中洞法施工工法
1、特点
目前,国内的双联拱隧道所采用的施工方法大多为中洞法施工,即三导坑先墙后拱法。在施工中遵循“管超前、严注浆、短开挖、强支护、快封闭、勤量测”的十八字方针。其特点为:
1.1 采用超前水平预注浆小导管、径向系统锚杆、锁脚锚杆、挂网和格栅喷混凝土等支护手段,加之开挖后立即封闭,形成受力封闭环,能有效的控制围岩变形和地表下沉,大大提高了施工的安全度。
1.2 其支护系统能很好地适应围岩的变形,与围岩形成一个整体,故能充分发挥围岩的自撑能力。
1.3 能应用量测监控等信息化管理方法指导施工,使整个施工过程均处于受控状态。 1.4 施工作业简便,不需要特殊的施工机械和设备,容易推广使用。 1.5 采用分部开挖,其超前中洞可起到探测和预报地质情况的功能。
1.6 中洞法施工减少了两个边导洞的施工,拱墙采取整体一次或分次衬砌,具有工序较简单、机械化程度较高、临时初期支护量小、施工进度较快、节约成本的特点。 1.7 为了保证侧洞初支钢格栅与中洞钢格栅连接板准确连接,该方法对中洞钢格栅的安装位置、步距、垂直度等要求相当高。
1.8 由于在中洞中墙天梁位置空间狭小,在破除临时中隔壁,施工侧洞二衬时,此处防水板的保护难度相当大。 2、工艺原理
所谓中洞法,就是在地下工程掘进中,通过临时支撑将开挖断面分成几个部分,中洞初支先行施工,待中洞贯通后施工中墙顶部和底部防水,再施工中墙结构;然后利用中墙结构作为侧洞施工的支撑点,再根据围岩情况进行其它部分的开挖与支护、防水层及侧洞结构。此工法是以新奥法的基本原理为依据,在开挖中尽量减少对围岩的扰动,通过超前管棚、锚(网)喷洞壁、钢拱架或格栅拱架支护系统和临时支撑联结,使断面及早闭合,控制围岩变形,并使之趋于稳定。同时,建立围岩支护结构监控量测系统,随时掌握施工过程中围岩的变化,合理安排,及时调整施工工艺和设计参数,确保施工安全。
事实上,各种施工方法都是围绕着中墙施工来进行的,中墙是整个隧道受力转换和受力平衡的支撑点,在结构设计中其刚度和稳定性应作控制,在施工中要认真处理好中墙的基底承载力和回填反压平衡,确保中墙稳定。 3、应用实例
北京地铁四号线第一标段工程—设计起点至马家楼站区间工程,起止里程为K0+000.000~K0+338.800,全长338.800 m,为暗挖双联拱隧道。正线起点在南四环北侧,马家堡西路下,线位较低,向北下穿出入线段左线后进入马家楼车站,与出入线左线形成立交,该部分为四号线南沿做预留,结构覆土厚度10m左右,线路设计坡度分别为-8‰、23‰、2‰,采用复合式衬砌,开挖跨度为11.1~11.142m,开挖高度为6.5~6.9m。
工法之二:暗挖隧道双侧壁导坑施工工法
1、特点
1.1本工法采用新奥法原理指导施工,能充分发挥围岩的自承能力,确保围岩稳定。开挖时首先进行两侧导洞的施工,各掌子面之间错开一定距离,多工序平行交叉施工,避免各掌子面之间的相互干扰。
1.2通过化整为零,将大断面隧道分成多个小洞进行开挖,避免了大规模塌方事件的发生,掌子面情况易于掌控。
1.3 施工工序比较复杂,初支结构受力转换复杂,格栅连接点多,施工质量不容易保证。
1.4 由于断面扁平,支护结构受力较大,初支结构的承载能力相对较小,特别是底脚处受力较大,结构要求有足够的地基承载力。
1.5 对于浅埋暗挖隧道,其埋深较浅,土层自稳能力差;特别是中洞开挖时,两侧现行形成的导洞初支结构,由于失去中间土层的侧向支撑力,打破了原有的应力平衡,容易产生水平位移,极易上部土体,乃至地表的沉降。
1.6 为了保证中洞初支钢格栅与侧洞钢格栅连接板准确连接,该方法对两边侧洞钢格栅的安装位置、步距、垂直度等要求相当高。 2、工艺原理
双侧壁导洞法是以新奥法为指导的施工方法,充分发挥围岩的自承能力。通过临时中隔壁,将大断面隧道或地质条件差的隧道断面化整为零分成6个或9个对称布置的小洞,进行开挖与支护。首先施工一侧的导洞,然后再施工另一侧的导洞,分别形
成永久支护和临时支护,当两侧导洞开挖一定距离后再开挖中导洞,使支护逐步成环。开挖完毕后,四周形成永久支护,中间是临时支撑的格构式支撑结构。
为了避免由于多面开挖而形成变形叠加,各掌子面之间须错开一定的距离。各个导洞首先自成环封闭,然后通过中洞将两侧导洞的初支进行连接,逐步使整个断面封闭成环。 3、应用实例
北京地铁四号线工程马家楼-石榴庄路区间隧道为单孔大跨隧道,工程起止里程为K0+722.000~K0+915.806,长度为193.806m。区间线路断面变化多,共有5种不同断面,分别为Ⅰ-Ⅰ断面、Ⅱ-Ⅱ断面、Ⅲ-Ⅲ断面、Ⅳ-Ⅳ断面、Ⅴ-Ⅴ断面,断面尺寸分别为: 13.3m(跨度)×10.17m(高度)、11.84m(跨度)×9.247m(高度)、11.6m(跨度)×9.178m(高度)、11.906m(跨度)×9.266m(高度)、12.406m(跨度)×9.411m(高度),其最大开挖断面达到了110m2, 拱部均为砂卵石层。初支施工采用双侧壁导坑法施工,全断面分成6个掌子面开挖。施工期间平均进尺1.5米/天。
工法之三:暗挖隧道CRD施工工法
1、工法特点
1.1 “CRD”工法理论源于新奥法,但强调预支护,及时支护,控制地面沉降,保证施工、地上建筑物、地下构筑物和各种管线等的安全。
1.2 隧道暗挖的“管超前,严注浆,短开挖,强支护,快封闭,勤量测” 十八字方针,是“CRD”工法的精髓。
1.3 该工法施工组织计划和施工工序应严格遵守“先排管,后注浆,再开挖,注浆一段,开挖一段,支护一段,封闭一段”的原则。 1.4 采用“CRD”工法施工安全度高、 2、工艺原理
“CRD“法是以新奥法的基本原理为指导,采用监控量测信息来反馈设计和指导施工的新理念,并采用先柔后刚复合式衬砌新型支护结构体系,初期支护和二次衬砌共同承担上部荷载。在采用该法施工时,同时采用多种辅助工法进行超前支护,来改善和加固围岩,调动部分围岩的自承能力;及时支护、封闭成环,使其与围岩共同作用形成联合支护体系;在施工过程中应用监控量测等手段,及时反馈信息,不断优化设计,实现不塌方、少沉降、安全生产与施工。
3、应用实例
北京地铁四号线第一标段的设计起点~马家楼站区间风道采用“CRD六步法”施工。该风道长度为47.79m,断面形式为城门洞型,共分为三种断面形式(FA、FB、FC),FA断面结构开挖尺寸为7.4×11.48m,长度为27.05m; FB断面结构开挖尺寸为7.4×12.46m,长度为15.99m;渐变断为FA向FB断面过渡段,长度为5.1m ;FC断面结构开挖尺寸为7.4×15.04m,长度为5.4m。风道上部位于圆砾卵石层,边墙处于中粗砂层、粉土层,底部处在圆砾卵石层。衬砌结构采用复合式衬砌。
工法之四:隧道衬砌模板台车施工工法
1、特点
1.1 台车架优化设计,既保证足够的强度和刚度,又结构简单,重量减轻,且外形美观。
1.2液压系统采用了液压锁、平衡阀等措施,对液压缸进行液压锁定,同时配套采用了丝杠机械锁定,这样的“双锁定”保证了模板在衬砌状态不变形、不移位,强化了模板的支承刚性,减轻了模板结构重量。
1.3 电气系统有全防爆式和不防爆式两种,可用于瓦斯隧道和普通隧道的衬砌施工,这在衬砌台车设备中具有创新性。
1.4钢模衬砌台车的研制成功,是对传统隧道衬砌施工方法的重大突破,一次衬砌长度最长可达12m,混凝土注入采用机械化,衬砌效率是传统施工方法的数十倍,可节省大量的人力物力,改善了工人的工作条件。台车可广泛适用于长、短隧道的衬砌施工,同时衬砌、开挖时车辆通行互不干扰,可同时作业,具有良好的经济效益和社会效益。 2、工艺原理
台车是靠自身具有的支撑体系、模板体系,同时又具有走行系统形成既能快速移动又能快速支撑和拆除的一整套模板系统,根据使用要求可分为明挖台车和暗挖台车。
台车由行走机构、台车架、钢模板、模板垂直升降和侧向伸缩机构、液压系统、电气控制系统6部分组成。如图1所示。