SCH¸ßÖÐÊýѧ£¨Äϼ«Êýѧ£©Í¬²½½ÌѧÉè¼Æ
1.4.2£¨1£©ÕýÏÒ¡¢ÓàÏÒº¯ÊýµÄÐÔÖÊ(½ÌѧÉè¼Æ)
½ÌѧĿµÄ£º
֪ʶĿ±ê£ºÒªÇóѧÉúÄÜÀí½âÖÜÆÚº¯Êý£¬ÖÜÆÚº¯ÊýµÄÖÜÆÚºÍ×îСÕýÖÜÆڵĶ¨Ò壻 ÄÜÁ¦Ä¿±ê£ºÕÆÎÕÕý¡¢ÓàÏÒº¯ÊýµÄÖÜÆÚºÍ×îСÕýÖÜÆÚ£¬²¢ÄÜÇó³öÕý¡¢ÓàÏÒº¯ÊýµÄ×îСÕýÖÜÆÚ¡£
µÂÓýÄ¿±ê£ºÈÃѧÉú×Ô¼º¸ù¾Ýº¯ÊýͼÏñ¶øµ¼³öÖÜÆÚÐÔ£¬Áì»á´ÓÌØÊâÍƹ㵽һ°ãµÄÊýѧ˼
Ï룬Ìå»áÈý½Çº¯ÊýͼÏñËùÔ̺µÄºÍгÃÀ£¬¼¤·¢Ñ§ÉúѧÊýѧµÄÐËȤ¡£
½ÌѧÖص㣺Õý¡¢ÓàÏÒº¯ÊýµÄÖÜÆÚÐÔ
½ÌѧÄѵ㣺Õý¡¢ÓàÏÒº¯ÊýÖÜÆÚÐÔµÄÀí½âÓëÓ¦Óà ÊÚ¿ÎÀàÐÍ£ºÐÂÊÚ¿Î
½Ìѧģʽ£ºÆô·¢¡¢ÓÕµ¼·¢ÏÖ½Ìѧ. ½Ìѧ¹ý³Ì£º
Ò»¡¢´´ÉèÇé¾³,µ¼ÈëÐ¿Σº
1£®ÏÖʵÉú»îÖеġ°Öܶø¸´Ê¼¡±ÏÖÏó£º
£¨1£©½ñÌìÊÇÐÇÆÚ¶þ£¬Ôò¹ýÁËÆßÌìÊÇÐÇÆÚ¼¸£¿¹ýÁËÊ®ËÄÌìÄØ£¿¡¡
£¨2£©ÏÖÔÚÏÂÎç2µã30£¬ÄÇôÿ¹ý24СʱºòÊǼ¸µã£¿ £¨3£©Â·¿ÚµÄºìÂ̵ƣ¨¹á´©·¨ÂÉÒâʶ£©
2£®ÊýѧÖÐÊÇ·ñ´æÔÚ¡°Öܶø¸´Ê¼¡±ÏÖÏ󣬹۲ìÕý£¨ÓࣩÏÒº¯ÊýµÄͼÏó×ܽá¹æÂÉ
y 1¨C
x ?? ?? ?5? ?2? O ?5? 2? ? 22 ?1 ¨C
ÕýÏÒº¯Êýf(x)?sinxÐÔÖÊÈçÏ£º
£¨¹Û²ìͼÏó£© 1?ÕýÏÒº¯ÊýµÄͼÏóÊÇÓйæÂɲ»¶ÏÖظ´³öÏֵģ»
1
SCH¸ßÖÐÊýѧ£¨Äϼ«Êýѧ£©Í¬²½½ÌѧÉè¼Æ
2?¹æÂÉÊÇ£ºÃ¿¸ô2?Öظ´³öÏÖÒ»´Î£¨»òÕß˵ÿ¸ô2k?,k?ZÖظ´³öÏÖ£© 3?Õâ¸ö¹æÂÉÓÉÓÕµ¼¹«Ê½sin(2k?+x)=sinx¿ÉÒÔ˵Ã÷
½áÂÛ£ºÏóÕâÑùÒ»ÖÖº¯Êý½Ð×öÖÜÆÚº¯Êý¡£
ÎÄ×ÖÓïÑÔ£ºÕýÏÒº¯ÊýÖµ°´ÕÕÒ»¶¨µÄ¹æÂɲ»¶ÏÖظ´µØÈ¡µÃ£»
·ûºÅÓïÑÔ£ºµ±xÔö¼Ó2k?£¨k?Z£©Ê±£¬×ÜÓÐf(x?2k?)?sin(x?2k?)?sinx?f(x)£® Ò²¼´£º£¨1£©µ±×Ô±äÁ¿xÔö¼Ó2k?ʱ£¬ÕýÏÒº¯ÊýµÄÖµÓÖÖظ´³öÏÖ£» £¨2£©¶ÔÓÚ¶¨ÒåÓòÄÚµÄÈÎÒâx£¬sin(x?2k?)?sinxºã³ÉÁ¢¡£ ÓàÏÒº¯ÊýÒ²¾ßÓÐͬÑùµÄÐÔÖÊ£¬ÕâÖÖÐÔÖÊÎÒÃǾͳÆ֮ΪÖÜÆÚÐÔ¡£ ¶þ¡¢Ê¦Éú»¥¶¯£¬Ð¿ν²½â£º
1£®ÖÜÆÚº¯Êý¶¨Ò壺¶ÔÓÚº¯Êýf (x)£¬Èç¹û´æÔÚÒ»¸ö·ÇÁã³£ÊýT£¬Ê¹µÃµ±xÈ¡¶¨ÒåÓòÄÚµÄÿһ¸öֵʱ£¬¶¼ÓУºf (x+T)=f (x)ÄÇôº¯Êýf (x)¾Í½Ð×öÖÜÆÚº¯Êý£¬·ÇÁã³£ÊýT½Ð×öÕâ¸öº¯ÊýµÄÖÜÆÚ¡£
ÎÊÌ⣺ £¨1£©ÕýÏÒº¯Êýy?sinx£¬Èç¹ûÊÇ£¬ÖÜÆÚÊǶàÉÙ£¿£¨2k?£¬x?RÊDz»ÊÇÖÜÆÚº¯Êý£¬k?ZÇÒk?0£©ÓàÏÒº¯ÊýÄØ£¿
£¨2£©¹Û²ìµÈʽ sin(?)?sinÊÇ·ñ³ÉÁ¢£¿Èç¹û³ÉÁ¢£¬Äܲ»ÄÜ˵ ÊÇy=sinxµÄÖÜÆÚ£¿
424????2 £¨3£©Èôº¯Êýf(x)µÄÖÜÆÚΪT£¬ÔòkT£¬k?Z*Ò²ÊÇf(x)µÄÖÜÆÚÂð£¿ÎªÊ²Ã´£¿
£¨ÊÇ£¬ÆäÔÒòΪ£ºf(x)?f(x?T)?f(x?2T)??f(x?kT)£©
2.×îСÕýÖÜÆÚ£ºTÍùÍùÊǶàÖµµÄ£¨Èçy=sinx 2?,4?,¡,-2?,-4?,¡¶¼ÊÇÖÜÆÚ£©ÖÜÆÚTÖÐ×îСµÄÕýÊý½Ð×öf (x)µÄ×îСÕýÖÜÆÚ£¨ÓÐЩÖÜÆÚº¯ÊýûÓÐ×îСÕýÖÜÆÚ£©
y=sinx, y=cosxµÄ×îСÕýÖÜÆÚΪ2? £¨Ò»°ã³ÆΪÖÜÆÚ£©
´ÓͼÏóÉÏ¿ÉÒÔ¿´³öy?sinx£¬x?R£»y?cosx£¬x?RµÄ×îСÕýÖÜÆÚΪ2?£» 3¡¢ÀýÌâ½²½â
Àý1£¨¿Î±¾P35Àý2£© ÇóÏÂÁÐÈý½Çº¯ÊýµÄÖÜÆÚ£º ¢Ùy?3cosx ¢Úy?sin2x£¨3£©y?2sin(x?)£¬x?R£®
612?½â£º£¨1£©¡ß3cos(x?2?)?3cosx£¬
¡à×Ô±äÁ¿xÖ»Òª²¢ÇÒÖÁÉÙÒªÔö¼Óµ½x?2?£¬º¯Êýy?3cosx£¬x?RµÄÖµ²ÅÄÜÖظ´³öÏÖ£¬ ËùÒÔ£¬º¯Êýy?3cosx£¬x?RµÄÖÜÆÚÊÇ2?£® £¨2£©¡ßsin(2x?2?)?sin2(x??)?sin2x£¬
¡à×Ô±äÁ¿xÖ»Òª²¢ÇÒÖÁÉÙÒªÔö¼Óµ½x??£¬º¯Êýy?sin2x£¬x?RµÄÖµ²ÅÄÜÖظ´³öÏÖ£¬
2
SCH¸ßÖÐÊýѧ£¨Äϼ«Êýѧ£©Í¬²½½ÌѧÉè¼Æ
ËùÒÔ£¬º¯Êýy?sin2x£¬x?RµÄÖÜÆÚÊÇ?£®
1?1?1?£¨3£©¡ß2sin[(x?)?2?]?2sin[(x?4?)?]?sin(x?),£¬
262626¡à×Ô±äÁ¿xÖ»Òª²¢ÇÒÖÁÉÙÒªÔö¼Óµ½x?4?£¬º¯Êýy?sin2x£¬x?RµÄÖµ²ÅÄÜÖظ´³öÏÖ£¬ ËùÒÔ£¬º¯Êýy?2sin(1x??26)£¬x?RµÄÖÜÆÚÊÇ4?£®
±äʽѵÁ·1£ºÇóÏÂÁÐÈý½Çº¯ÊýµÄÖÜÆÚ£º
£¨1£©y=sin3x £¨2£©y=cosx £¨3£©y=3sinx34
(4) y=sin(x+
?10) (5) y=cos(2x+?3) ½â£º1? ? sin(3x+2?)=sin3x ÓÖsin(3x+2?)=sin3(x+2?3) ¼´£ºf (x+
2?3)=f (x) ¡àÖÜÆÚT=2?3 2? cosxx3=cos(3?2?)=cos13(x?6?)
¼´£ºf (x+6?)=f (x) ¡àT=6?
3? ? 3sinx=3sin(x+2?)=3sin(1444£¨x?8?£©)=f (x+8?) ¼´£ºf(x+8?)=f(x) ¡àT=8? 4? ?sin(x+?10)=sin(x+?10+2?) ¼´f(x)=f(x+2?) ¡àT=2?
5? ?cos(2x+?)=cos[(2x+?)+2?]=cos[2(x+?)+?333] ¼´£ºf(x+?)=f(x) ¡àT=?
ÓÉÒÔÉÏÁ·Ï°£¬ÇëͬѧÃÇ×ÔÖ÷̽¾¿TÓëxµÄϵÊýÖ®¼äµÄ¹Øϵ¡£
С½á£ºÐÎÈçy=Asin(¦Øx+¦Õ) (A,¦Ø,¦ÕΪ³£Êý,A?0, x?R) ÖÜÆÚT?2?|?| y=Acos(¦Øx+¦Õ)Ò²¿Éͬ·¨ÇóÖ®
Ò»°ã½áÂÛ£ºº¯Êýy?Asin(?x??)?b¼°º¯Êýy?Acos(?x??)?b£¬x?RµÄÖÜÆÚT?2?|?|
3
SCH¸ßÖÐÊýѧ£¨Äϼ«Êýѧ£©Í¬²½½ÌѧÉè¼Æ
¿ÎÌù®¹ÌÁ·Ï°2 ¿ìËÙÇó³öÏÂÁÐÈý½Çº¯ÊýµÄÖÜÆÚ
(1)y=sinx £¨2£© y=cos4x+1 (3) y=?cos(?5x) (4)y=sin(?x?(5)y=3cos(-x?)-1
325341213?4)
?Èý¡¢¿ÎÌÃС½á£º1.ÖÜÆÚº¯Êý¶¨Ò壺¶Ô¶¨ÒåÓòÄÚÈÎÒâx,¶¼ÓÐf(x+T)=f(x). 2.y=sin xÓëy=cos xµÄÖÜÆÚ¶¼ÊÇ2k?,×îСÕýÖÜÆÚÊÇ2¦Ð. 3.y?Asin(?x??)?b¼°y?Acos(?x??)?bµÄÖÜÆÚT?2?|?|
ËÄ¡¢×÷Òµ²¼Öà 1¡¢P52 3 2¡¢½ðÌ«Ñôµ¼Ñ§°¸Óë¹Ìѧ°¸ 4£®
ÆæżÐÔ
ÇëͬѧÃǹ۲ìÕý¡¢ÓàÏÒº¯ÊýµÄͼÐΣ¬Ëµ³öº¯ÊýͼÏóÓÐÔõÑùµÄ¶Ô³ÆÐÔ£¿ÆäÌصãÊÇʲô£¿
(1)ÓàÏÒº¯ÊýµÄͼÐÎ
µ±×Ô±äÁ¿È¡Ò»¶ÔÏà·´Êýʱ£¬º¯Êýyȡͬһֵ¡£ ÀýÈ磺
f(-)=,f()= ,¼´f(-)=f()£»¡¡ ÓÉÓÚcos(£x)=cosx ¡àf(-x)= f(x).
ÒÔÉÏÇé¿ö·´Ó³ÔÚͼÏóÉϾÍÊÇ£ºÈç¹ûµã£¨x,y£©ÊǺ¯Êýy=cosxµÄͼÏóÉϵÄÈÎÒ»µã,ÄÇô,ÓëËü¹ØÓÚyÖáµÄ¶Ô³Æµã(-x,y)Ò²ÔÚº¯Êýy=cosxµÄͼÏóÉÏ£¬Õâʱ£¬ÎÒÃÇ˵º¯Êýy=cosxÊÇżº¯Êý¡£
4
?312?312?3?3