罗斯公司理财第九版课后习题答案中文版 下载本文

根据CAPM,B公司股票的预期收益为16%,表格中B公司股票的预期收益也为16%,因此B公司的股票是正确定价。

C公司

E(RC)=Rf+βC[E(RM)-Rf]=0.05+1.14(0.15-0.05)=16.38%

根据CAPM,C公司的股票的预期收益为16.38%,表格中C公司股票的预期收益也为25%,因此C公司的股票被低估了,应该买入。

41.

CML的斜率SlopeCML=[E(RM)-Rf]/σM=(0.12-0.05)/0.10=0.70 (1)期望收益E(RP)=Rf+SlopeCML(σP)=0.05+0.70(0.07)=9.90% (2)标准差=[E(RP)-Rf]/SlopeCML=(0.20-.0.05)/0.70=21.43% 42.

SlopeCML=预期收益率的增加额/标准差的增加额=(0.12-0.50)/(0.18-0)=0.39

根据CML

E(RM) = Rf + SlopeCML(σM) 0.12 = 0.05 + (0.39)(σM)

市场组合的标准差σM = (0.12 –0 .05) / 0.39=18.00% 债券的贝塔系数β=(ρL,M)(σI)/σM=(0.4)(0.40)/0.18=0.89

根据CMPA E(RI)=Rf+βI[E(RM)-Rf]=0.05+0.89(0.14-0.05)=13.01% 43.

市场组合的标准差σM = =22.32% 组合Z的标准差σZ ==42.23%

组合Z的贝塔系数βZ=(ρZ,M)(σZ)/σM=(0.45)(0.4223)/0.2232=0.85 组合Z的期望收益

E(RZ)=Rf+βZ[E(RM)-Rf]=0.062+0.85(0.148-0.063)=13.54%

44. 股票I

期望收益E(RI)=0.15(0.09)+0.70(0.42) +0.15(0.26) = 34.65% 贝塔系数βI=(0.3465-0.04)/0.1=3.07

方差σI2 = 0.15(0.09 –0.3465)2 + 0.70(0.42 –0.3465)2 +0.15(0.26 – 0.3465)2=0.01477

标准差σI= =12.15% 股票II

期望收益E(RII) =0.15(–0.30) +0.70(0.12) + 0.15(0.44) = 10.50% 0.1050 = 0.04 + 0.10βII 贝塔系数βII = 0.65

方差σII2 = 0.15(–0.30–0.105)2 + 0.70(0.12–0.105)2 + 0.15(0.44–0.105)2 =0.04160

标准差σII = =20.39%

尽管股票II的总体风险高于股票I,但是股票II的贝塔系数远低于股票I,因此七系统性风险低于股票I。股票I的系统性风险更大,股票II的非系统系风险和总风险更大。由于非系统性风险可以分散,股票I是真正有风险的股票。

45.

E(RPete Corp.) = 0.23 = Rf + 1.3(RM – Rf); E(RRepete Co.) = 0.13 = Rf + 0.6(RM – Rf) 0.23 = Rf + 1.3RM – 1.3Rf = 1.3RM – 0.3Rf

0.13 = Rf + 0.6(RM – Rf) = Rf + 0.6RM – 0.6Rf Rf = (1.3RM– 0.23)/0.3 RM = (0.13 – 0.4Rf)/0.6 RM = 0.217 – 0.667Rf

Rf = [1.3(0.217 – 0.667Rf) – 0.23]/0.3 1.167Rf = 0.0521 Rf = 4.43%

0.23 = 0.0443 + 1.3(RM – .0443) RM = 18.71% 46. (1)债券1

E(R1) = 0.10(0.25) + 0.40(0.20) + 0.40(0.15) + 0.10(0.10) = 17.50% σ12 =0.10(0.25 – 0.1750)2 + 0.40(0.20 – 0.1750)2 + 0.40(0.15 – 0.1750)2 +

0.10(0.10 – 0.1750)2 = 0.00163

σ1 = (0.00163)1/2 = 4.03% 债券2

E(R2) = 0.10(0.25) + 0.40(0.15) + 0.40(0.20) + 0.10(0.10) = 17.50% σ22=0.10(0.25 – 0.1750)2 + 0.40(0.15 – 0.1750)2 + 0.40(0.20 – 0.1750)2 + 0.10(0.10 – 0.1750)2

= 0.00163

σ2 = (0.00163)1/2 = 4.03% 债券3

E(R3) = 0.10(0.10) + 0.40(0.15) + 0.40(0.20) + 0.10(0.25) = 17.50%

σ32 =0.10(0.10 – 0.1750)2 + 0.40(0.15 – 0.1750)2 + 0.40(0.20 – 0.1750)2 + 0.10(0.25 – 0.1750)2

= 0.00163

σ3 = (0.00163)1/2 = 4.03% (2)债券1和债券2

Cov(1,2) = 0.10(0.25 – 0.1750)0(.25 – 0.1750) + 0.40(0.20 – 0.1750)(0.15 – 0.1750)

+ 0.40(0.15 – 0.1750)(0.20 – 0.1750) + 0.10(0.10 – 0.1750)(0.10 – 0.1750)

= 0.000625

ρ1,2 = Cov(1,2) / σ1σ2= .000625 / (0.0403)(0.0403)= 0.3846 债券1 和债券3

Cov(1,3) = 0.10(0.25 – 0.1750)(0.10 – 0.1750) + 0.40(0.20 – 0.1750)(0.15 – 0.1750)

+ 0.40(0.15 – 0.1750)(0.20 – 0.1750) + 0.10(0.10 – 0.1750)(0.25 – 0.1750)

= –0.001625

ρ1,3 = Cov(1,3) /σ1σ3= –0.001625 / (0.0403)(0.0403)= –1 债券2和债券3

Cov(2,3) = 0.10(0.25 – 0.1750)(0.10 – 0.1750) + 0.40(0.15 – 0.1750)(0.15 – 0.1750)

+ 0.40(0.20 – 0.1750)(0.20 – 0.1750) + 0.10(0.10 – 0.1750)(0.25 – .1750) = –0.000625

ρ2,3 = Cov(2,3) / σ2σ3–0.00625 / (0.0403)(0.0403)–0.3846 (3)E(RP) = w1E(R1) + w2E(R2)

= 0.50(0.1750) + 0.50(0.1750) = 17.50%