到10MHz,最好的不超过100MHz。虽然音频范围只有10Hz~20kHz,可是三极管的电流放大倍率与工作频率相关,处于工作频率上限时,电流放大倍率会下降到1倍。这使得工作频率上限低的三极管对20kHz高音的放大能力比2kHz中音的放大能力要低,也就导致开环状态下高音与中音的电流放大倍率已经不保持相同。而闭环负反馈对整个音频保持相同的取样倍率,并不改变混合信号里高音电流放大倍率比中音电流放大倍率低的状况,从而使混合信号里的高音实际比中音的放大倍率要低。所以,使用工作频率上限高的大功率三极管,可使混合信号里高音电流放大倍率比中音电流放大倍率下降得要少。如果使用频率上限只达到1MHz的大功率三极管制作音频功率放大器,将感到8kHz以上的高音成分严重不足。故此,国外的电子元件制造厂已经在20世纪90年代研制出性能超群的音频功率放大器专用大功率三极管。日本三肯公司制造的三肯管是最早出名的音频功率放大器专用大功率三极管,但它们都不是达林顿管,需要性能同样超群的中功率来做驱动前极,而且要给驱动前极中功率安装散热器。
到20世纪80年代后期,人们研制出性能更高的大功率场效应管。任何大功率场效应管的工作频率上限也能达到100MHz,但因起初缺少高工作电压的大功率场效应管,生产厂家制作输出功率超过40W的功率放大器还是以选用大
功率三极管。实际上,使用大功率场效应管制作功率放大器比使用大功率三极管制作功率放大器更方便。但需要特别注意一点,虽然效应管是电压控制型器件,但大功率场效应管的输入栅极与源极之间存在较大的结电容,可达到800P左右,因此在工作频率较高的状况下同样要提供5mA~10mA充放电驱动电流。窜联在栅极前的电阻会影响对输入结电容的充放电,阻值尽量取小。图⑨即是采用大功率场效应管的实用功率放大器电路,由于某些大功率场效应管栅极没有内置限压保护稳压管,特地在电路中加入了限压保护稳压管。使用没有内置限压保护稳压管的大功率场效应管,焊接时必须先用导线将栅极与源极短路,焊接好大功率场效应管和限压保护稳压管后才能将栅极与源极间的短路导线去除。采用大功率场效应管设计的功率放大器,调试方式与采用大功率三极管设计的功率放大器完全相同。 需要注意的是,大功率场效应管的门坎电压在2V~3V之间,(三星公司生产的大功率场效应管门坎电压多为2V),大功率场效应管的实际工作电压不要超过最大允许电压的一半值,最大工作电流峰值不要超过允许电流的2/3方能确保安全可靠工作。这个要求已经比对三机管的要求宽很多,三机管的实际工作电压也不能超过最大允许电压的一半值,而三机管的最大工作电流峰值不能超过最大允许电流的1/3方能正常工作。大功率场效应管还有一个极大的优点是温度稳定性能十分良好,从
25℃~125℃,工作特性几乎完全相同。所以使用大功率场效应管时,散热器上的温度也可以相应允许高到90℃,而三极管还存在二此击穿的可能,实际允许工作的温度应限制在70℃以下。 四、使用多组电源供电高效功率放大器 没有把输出端中点电压严格控制在要求理想数值状况下,功率放大器只能使用单电源供电,中点电源采用自动跟随的浮动方式实现。只要给足够大容量的储能电容,实际输出能力与使用双电源的OCL输出方式并无区别。之所以要采用OCL输出方式,除了面可以进一步设计出性能更好功率放大器外,更大的实际意义是使用正负双电源供电的OCL输出方式可以进一步降低电路背景噪声。在功率放大器前置信号输入级采用差动放大电路后,输出端直流电平已经能与信号输入端直流电平保持基本相等,相差小于±0.2V。在这种状况下,将信号输入端直流电平偏置电阻连接到正负双电源中点电位上,就可以把单电源供电的OTL输出方式改成使用正负双电源供电的OCL输出方式,不再使用自动跟随的浮动中点电源。其实,使用运放IC做前置信号输入级能使输出端的直流电平与信号输入端直流电平保持几乎相等,相差小于±0.02V,正是因为运放IC内部也采用差动放大电路做输入级,而且一般都采用复合管方式的差动放大电路做输入级,从而使流进或流出IC正、负输入端的静态电流低于0.1μA,在负反馈电阻上的静态直流压降已低于0.01V。若能找到特
性非常一直的配对管,当然也可以采用复合管方式的差动放大电路做输入级,使输出端的直流电平与信号输入端直流电平保持几乎相等,相差小于±0.02V,特性极其一致的配对管需要在一片半导体材料上做成,这正是运放IC的制作工艺优势。简言之,仅仅把OTL输出方式改成OCL输出方式,在电路设计上没有任何提高。实际上,以甲乙类工作方式制作的互补对称式功率放大器存在一个缺陷,就是最后级大功率电流放大管的静态处于接近截止区位置,无论使用大功率三级管,还是使用大功率场效应管,在截止区附近的动态电阻都明显比线性区的动态电阻要大得很多,实际可以相差数倍到10多倍。静态电流越小,动态电阻越大。当放大器输出电压归零时,喇叭振动盆还会继续作阻尼振动到停止。音圈在磁场中运动产生的电流将阻碍喇叭振动盆自由振动,如果与音圈串联的放大器内阻比较大,就会使音圈在磁场中运动产生的电流减少,降低电阻尼作用,振动盆的阻尼振动就不容易停止下来,发出的声音出现“拖泥带水”的发散收不住状况。与此同时,中低音单元喇叭的音圈在磁场中移动所产生的感应电流不能被功率放大器尽可能短路掉,会成为妨碍中高音单元喇叭工作的干扰驱动信号。甲类放大器之所以有较好的重放音质,奥妙就在于它具有很低的静态输出阻抗。但由于甲类放大器功耗大、发热严重,不宜在大工作电压下采用。为此,可以在使用高低两组正负电源供电的方式下对