广东省珠海市2019-2020学年中考数学二模试卷含解析 下载本文

广东省珠海市2019-2020学年中考数学二模试卷

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列说法正确的是( )

A.某工厂质检员检测某批灯泡的使用寿命采用普查法

B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6 C.12名同学中有两人的出生月份相同是必然事件

D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是

1 32.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得( ) A.168(1﹣x)2=108 C.168(1﹣2x)=108

B.168(1﹣x2)=108 D.168(1+x)2=108

3.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )

①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h; ⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时 A.2个

B.3个

C.4个

D.5个

4.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x辆,根据题意,可列出的方程是 ( ). A.3x?2?2x?9

B.3(x?2)?2x?9 D.3(x?2)?2(x?9)

C.

xx?2??9 325.已知?A.4

?x?2?mx?ny?7是二元一次方程组?的解,则m+3n的值是( )

?y?1?nx?my?1B.6

C.7

D.8

6.如图是由5个相同的正方体搭成的几何体,其左视图是( )

A. B.

C. D.

7.下列图形中,是中心对称但不是轴对称图形的为( )

A. B.

C. D.

8.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为( )

A.

3 5B.

7 25C.

4 5D.

24 259.一元二次方程2x2﹣3x+1=0的根的情况是( ) A.有两个相等的实数根 C.只有一个实数根

B.有两个不相等的实数根 D.没有实数根

10.下列式子中,与23?2互为有理化因式的是( ) A.23?2

B.23?2

C.3?22 D.3?22

11.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是( )

A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣3

12.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为( )

A.24 B.18 C.12 D.9

二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算327?4=________.

14.二次函数y?ax2?bx?c的图象如图所示,给出下列说法:

①ab?0;②方程ax2?bx?c?0的根为x1??1,x2?3;③a?b?c?0;④当x?1时,y随x值 的增大而增大;⑤当y?0时,?1?x?3.其中,正确的说法有________(请写出所有正确说法的序号).

15.分解因式:4x2﹣36=___________.

16.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.

17.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.

18.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为_____.

三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.

19.(6分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以

2010年该市计划投资“改水工程”1176万元.相同的增长率投资,求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?

20.(6分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?

21.AB=4,BC=6,E是BC边的中点,(6分)如图,矩形ABCD中,点P在线段AD上,过P作PF⊥AE于F,设PA=x.

(1)求证:△PFA∽△ABE;

(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;

(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .

22.(8分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间(天)的关系如图中线段l2所示(不考虑其他因素).

(1)求原有蓄水量y1(万m3)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量. (2)求当0≤x≤60时,水库的总蓄水量y万(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.

23.(8分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下: