CE∥x轴,可知C、E关于对称轴对称。根据A、C点求得直线AC的解析式,根据B、E点求出直线BE的解析式,联立方程求得的解,即为F点的坐标;
由E、C、F、D的坐标可知DF和EC互相垂直平分,则可判定四边形CDEF为菱形. 【详解】
(1)∵抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣)两点,
∴,解得
,
∴抛物线解析式为y=x2+x﹣; (2)∵y=x2+x﹣, ∴抛物线对称轴为直线x=﹣1, ∵CE∥x轴,
∴C、E关于对称轴对称, ∵C(0,﹣), ∴E(﹣2,﹣), ∵A、B关于对称轴对称, ∴B(1,0),
设直线AC、BE解析式分别为y=kx+b,y=k′x+b′, 则由题意可得
,
,
解得,,
∴直线AC、BE解析式分别为y=﹣x﹣,y=x﹣,
联立两直线解析式可得∴F点坐标为(﹣1,﹣1); (3)四边形CDEF是菱形.
,解得,
证明:∵y=x2+x﹣=(x+1)2﹣2, ∴D(﹣1,﹣2), ∵F(﹣1,﹣1),
∴DF⊥x轴,且CE∥x轴, ∴DF⊥CE,
∵C(0,﹣),且F(﹣1,﹣1),D(﹣1,﹣2), ∴DF和CE互相平分, ∴四边形CDEF是菱形. 【点睛】
本题考查菱形的判定方法,二次函数的性质,以及二次函数与二元一次方程组.
13.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.
(1)求证:四边形DEFG为菱形; (2)若CD=8,CF=4,求
的值.
【答案】(1)证明见试题解析;(2). 【解析】
试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形; (2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;
(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,即
,解得:x=5,CE=8﹣x=3,∴
=.
,
的值.
试题解析:(1)由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,
考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.
14.如图①,在△ABC中,AB=7,tanA=,∠B=45°.点P从点A出发,沿AB方向以每秒1个单位长度的速度向终点B运动(不与点A、B重合),过点P作PQ⊥AB.交折线AC-CB于点Q,以PQ为边向右作正方形PQMN,设点P的运动时间为t(秒),正方形PQMN与△ABC重叠部分图形的面积为S(平方单位).
(1)直接写出正方形PQMN的边PQ的长(用含t的代数式表示). (2)当点M落在边BC上时,求t的值. (3)求S与t之间的函数关系式.
(4)如图②,点P运动的同时,点H从点B出发,沿B-A-B的方向做一次往返运动,在B-A上的速度为每秒2个单位长度,在A-B上的速度为每秒4个单位长度,当点H停止运动时,点P也随之停止,连结MH.设MH将正方形PQMN分成的两部分图形面积分别为S1、S2(平方单位)(0<S1<S2),直接写出当S2≥3S1时t的取值范围.
【答案】(1) PQ=7-t.(2) t=.(3) 当0<t≤时,S=.当<t≤4,
或
或
.当4<t<7时,
.
【解析】
.(4)
试题分析:(1)分两种情况讨论:当点Q在线段AC上时,当点Q在线段BC上时. (2)根据AP+PN+NB=AB,列出关于t的方程即可解答; (3)当0<t≤(4)
时,当或
<t≤4,当4<t<7时;
或
.
试题解析:(1)当点Q在线段AC上时,PQ=tanAAP=t. 当点Q在线段BC上时,PQ=7-t. (2)当点M落在边BC上时,如图③,
由题意得:t+t+t=7, 解得:t=
.
.
∴当点M落在边BC上时,求t的值为(3)当0<t≤
时,如图④,
S=当
.
<t≤4,如图⑤,
.
当4<t<7时,如图⑥,
.
(4)
或
或
..
考点:四边形综合题.
15.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.