2015年人教版八年级上数学导学案(全册) 下载本文

沾化区古城中学 班级 姓名 八年级上册导学案 备课教师:丁泽军 第十一章 三角形

11.1.1 三角形的边 导学案

【学习目标】1.认识三角形,?能用符号语言表示三角形,并把三角形分类.

2.知道三角形三边不等的关系.

3.懂得判断三条线段能否构成一个三角形的方法,?并能用于解决有关的问题

【学习重点】知道三角形三边不等关系.

【学习难点】 判断三条线段能否构成一个三角形的方法. 【学习过程】 一、学前准备

回忆你所学过或知道的三角形的有关知识。并写出来。 A

二、探索思考

知识点一:三角形概念及分类

1、学生自学课本2-3页探究之前内容,并完成下列问题:

B C

(1)三角形概念:由不在同一直线上的三条线段___________________所组成的图形叫做三角形。如图,线段____、______、______是三角形的边;三角形的边,有时也用小写字母 来表示。点A、B、C是三角形的______;____、____、____是相邻两边组成的角,叫做三角形的内角,简称三角形的角。上图中三角形记作__________。读作 (2)三角形按角分类可分为_____________、______________、_________________。

(3)我们知道,一般的三角形三边都不相等,也就是常说的不等边三角形。如果三边都相等的三角形叫做 ,其中只有两边相等的三角形叫做 。如图1,等腰三角形ABC中,AB=AC,腰是__________,

A D 底是_________,顶角指_______,底角指_____________. 等边三角形DEF是特殊的_______三角形,DE=____=_____.

B C E F 图1

故三角形按边分类可分为 _____________ 三角形 _____________ ——————— _____________

第1页 1、下列图形中是三角形的有_______________?

2、图3中有几个三角形?用符号表示这些三角形.

知识点二:知道三角形三边的不等关系,并判断三条线段能否构成三角形 阅读第3页探究:请同学们画一个△ABC,分别量出AB,BC,AC的长,并比较下列各式的大小:AB+BC____AC , AB+ AC ____ BC, AC +BC ____ AB 从中你可以得出结论:__________________________________________。 1、下列长度的三条线段能否组成三角形?为什么? (1)3,4,8; (2)5,6,11; (3)5,6,10

2、有四根木条,长度分别是12cm、10cm、8cm、4cm,选其中三根组成三角形,能组成三角形的个数是_______个。

3、如果三角形的两边长分别是3和5,那么第三边长可能是( )

A、1 B、9 C、3 D、10

4、认真阅读课本第3页例题,仿照例题解法完成下面这个问题:

一个三角形有两条边相等,周长为20cm,三角形的一边长6cm,求其他两边长。

三、当堂反馈

1、 课本4页1、2题

2、 一个等腰三角形的两边长分别是2和5,则它的周长是( )

A、7 B、9 C、12 D、9或12

3、若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为___________. 4、(选做)若△ABC的三边长都是整数,周长为11,且有一边长为4,则这个三角形可能的最

大边长是___________.

5、(选做)已知线段3cm,5cm,xcm,x为偶数,以3,5,x为边能组成______个三角形。 四、课堂小结:本节课你学到了那些知识?

五、课后反思

第2页

沾化区古城中学 班级 姓名 八年级上册导学案 备课教师:丁泽军 11.1.2 三角形的高、中线与角平分线 导学案

【学习目标】1.认识并会画出三角形的高线,利用其解决相关问题;

2.认识并会画出三角形的中线,利用其解决相关问题; 3.认识并会画出三角形的角平分线,利用其解决相关问题;

【学习重点】 认识三角形的高线、中线与角平分线,并会画出图形 【学习难点】 画出三角形的高线、中线与角平分线. 【学习过程】 一、学前准备

1、三角形按边分可分为什么? 按角分可分为什么?

2、下列长度的三个线段能否组成三角形?为什么?

(1)3,6,8 (2)1,2,3 (3)6,8,2 二、探索思考

知识点一:认识并会画三角形的高线,利用其解决相关问题 自学课本4页三角形的高并完成下列各题: 1、作出下列三角形三边上的高:

A A

B C B C

2、上面第1个图中,AD是△ABC的边BC上的高,则∠ADC=∠ = ° 3、由作图可得出如下结论:(1)三角形的三条高线所在的直线相交于 点;(2)锐角三角形的三条高相交于三角形的 ;(3)钝角三角形的三条高所在直线相交于三角形的 ;(4)直角三角形的三条高相交三角形的 ;(5)交点我们叫做三角形的垂心。 练习一:如图所示,画△ABC的一边上的高,下列画法正确的是( ).

知识点二:认识并会画三角形的中线,利用其解决相关问题 自学课本4页三角形的中线并完成下列各题: 1、 作出下列三角形三边上的中线 A A

B C B C

第3页 2、AD是△ABC的边BC上的中线,则有BD = =

12 , 3、由作图可得出如下结论:(1)三角形的三条中线相交于 点; (2)锐角三角形的三条中线相交于三角形的 ;(3)钝角三角形 的三条中线相交于三角形的 ;(4)直角三角形的三条中线相交于三角形的 ; (5)三条中线的交点我们叫做三角形的 。

练习二:如图,D、E是边AC的三等分点,图中有 个三角形,

BD是三角形 中 边上的中线,BE是三角形 中________上的中线;

知识点三:认识并会画三角形的角平分线,利用其解决相关问题 自学课本5页三角形的角平分线并完成下列各题: 1、作出下列三角形三角的角平分线: A A

B C

B C 2、AD是△ABC中∠BAC的角平分线,则∠BAD=∠ =

12∠ 3、由作图可得出如下结论:(1)三角形的三条角平分线相交于 点;(2)锐角三角形的三条角平分线相交三角形的 ;(3)钝角三角形的三条角平分线相交三角形的 ;(4)直角三角形的三条角平分线相交三角形的 ;(5)三条角平分线的交点我们叫做三角形的内心。 练习三:如图,已知∠1=

12∠BAC,∠2 =∠3,则∠BAC的平分线为 ,∠ABC的平分线为 .

总结:三角形的高、中线、角平分线都是一条线段。 三、当堂反馈

1.课本5页练习第1、2题。 2.三角形的角平分线是( ).

A.直线 B.射线 C.线段 D.以上都不对

3.下列说法:①三角形的角平分线、中线、高线都是线段;?②直角三角形只有一条高线;③三角形的中线可能在三角形的外部;④三角形的高线都在三角形的内部,并且相交于一点,其中说法正确的有( ).

A.1个 B.2个 C.3个 D.4个 4.如图,过点A画BC边的高AD、角平分线AE和中线AF,写出图中所有相等的角和相等的线段。 5.(选做)在△ABC中,AB=AC,AC边上的中线BD把三角形的周长

分为12cm和15cm两部分,求三角形各边的长.

A

四、课堂小结 本节课你学到了那些知识? 五、课后反思

B

C

第4页

沾化区古城中学 班级 姓名 八年级上册导学案 备课教师:丁泽军 11.1.3 三角形的稳定性 导学案

【学习目标】1.认识三角形的稳定性,并会用其解决一些实际问题;

2、通过练习进一步巩固三角形的边和相关线段。

【学习重点】三角形的稳定性 【学习难点】三角形的稳定性的理解 【学习过程】

一、学前准备 找找生活中的引用三角形和四边形的例子,写出来。

二、探索思考

知识点一:三角形的稳定性

自学课本6-7页内容,回答下列问题:

1、通过观察,你发现生活中哪些物体的结构是三角形?

实际动手做一做

1、用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗? 2、用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?

3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?

4、如图4所示,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?

5、想一想:在实际生活中还有哪些地方利用了“三角形的稳定性”来为我们服务?“四边形易变形”是优点还是缺点?生活中又有哪些应用?

第5页 1.如图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条,这样做的数学道理是 ; 2.⑴ 下列图中哪些具有稳定性? 。

1 2 3 4 5 6

⑵ 对不具稳定性的图形,请适当地添加线段,使之具有稳定性。

3.造房子的屋顶常用三角结构,从数学角度来看,是应用了______________,而活动接架则应用了四边形的_______________。

知识点二:通过练习进一步巩固三角形的边和相关线段 _B _D 三、当堂反馈

_E 1.如图:(1)在△ABC中,BC边上的高是________ (2)在△AEC中,AE边上的高是________ _A _F

_C (3)在△FEC中,EC边上的高是_________

(4)若AB=CD=2cm,AE=3cm,则

s△AEC=_______,CE=_______。

2.以下列各组线段长为边,能组成三角形的是 ( )

A.1cm,2cm,4cm; B.8cm,6cm,4cm C.12cm,5cm,6cm; D.2cm,3cm,6cm 3.已知等腰三角形的两边长分别为6cm和3cm,则该等腰三角形的周长是( ) O A.9cm B. 12cm C. 12cm或15cm D. 15cm 4.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取 一点O,测得OA=15米,OB=10米,A、B间的距离 A B 不可能是( )

A

A.20米 B.15米 C.10米 D.5米 5、如图,点D是BC边上的中点,如果AB=3厘米,AC=4厘米, 则△ABD和△ACD的周长之差为________,面积之差为__________。

C

B

D 6、请将课本第8页习题11.1第1、2、3、4、5做在书上,第6、7、8、9做在作业本上。 四、课堂小结 本节课你学到了那些知识?

五、课后反思

第6页

沾化区古城中学 班级 姓名 八年级上册导学案 备课教师:丁泽军 11.1 与三角形有关的线段练习 导学案

【学习目标】通过练习进一步巩固三角形的边和相关线段。 【学习重点】巩固三角形的边和相关线段; 【学习难点】 三角形三边不等关系的运用 【学习过程】 一、学前准备 1、什么叫做三角形?

2、三角形按边可分为什么?按角可分为什么? 3、三角形三边不等关系是什么?

4、三角形的高、中线、角平分线各有什么特征? 5、三角形具有_______性,四边形具有_________性。 二、达标检测:

1.如图1,图中所有三角形的个数为 ,在△ABE中,AE所对的角是 ,∠ABC所对的边是 ,在△ADE中,AD是∠ 的对边,在△ADC中,AD是∠ 的对边;

2.如图2,已知∠1=12∠BAC,∠2 =∠3,则∠BAC的平分线为 ,∠ABC的平分线

为 ;

3.如图3,D、E是边AC的三等分点,图中有 个三角形,BD是三角形 中 边上的中线,BE是三角形 中 边上的中线;

图1 图2 图3

4.若等腰三角形的两边长分别为7和8,其周长为 ;若两边长分别为4和8,其周长为_____. 5. 一个三角形的三边之比为2∶3∶4,周长为36cm,则此三角形三边的长分别为____________. 6.已知△ABC中,AD为BC边上的中线,AB=10cm,AC=6cm,则△ABD与△ACD的周长之差为_______. 7.如右图,图中共有三角形 ( )

A、4个 B、5个 C、6个 D、8个

第7页 8.下列长度的三条线段中,能组成三角形的是 ( )

A、 3cm,5cm ,8cm B、8cm,8cm,18cm C、0.1cm,0.1cm,0.1cm D、3cm,40cm,8cm 9.如果线段a,b,c能组成三角形,那么,它们的长度比可能是 ( ) A、1∶2∶4 B、1∶3∶4 C、3∶4∶7 D、2∶3∶4

10.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为 ( ) A、5 B、6 C、7 D、8 11.如图,分别画出三角形过顶点A的中线、角平分线和高。 A A A

B

C

B C

B

C

12.已知:△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求:△ABC的各边的长。

13.⑴ 已知等腰三角形的一边等于8cm,另一边等于6cm,求此三角形的周长;

⑵ 已知等腰三角形的一边等于5cm,另一边等于2cm,求此三角形的周长。

14.在△ABC中AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角

形的三边长。

15.【探究】如图,在△ABC中,若AD是BC边上的中线,则有BD = =12 ,若过AA点作BC边上的高AE,利用三角形的面积公式可求得S1△ABD= =2S△ABC, 请你任意画一个三角形,将这个三角形的面积四等分。

B 第8页

DEC