¡¶ÀëÉ¢Êýѧ¡·Ìâ¿â¼°´ð°¸ ÏÂÔØ±¾ÎÄ

´ð£º

n(n?1), n-1 260¡¢Ò»¿ÃÎÞÏòÊ÷µÄ¶¥µãÊýnÓë±ßÊým¹ØÏµÊÇ( )¡£

´ð£ºm=n-1

61¡¢Ò»¸öͼµÄÅ·À­»ØÂ·ÊÇÒ»Ìõͨ¹ýͼÖÐ( )µÄ»ØÂ·¡£

´ð£ºËùÓбßÒ»´ÎÇÒÇ¡ºÃÒ»´Î

62¡¢ÓÐn¸ö½áµãµÄÊ÷£¬Æä½áµã¶ÈÊýÖ®ºÍÊÇ( )¡£

´ð£º2n-2£¨½áµã¶ÈÊýµÄ¶¨Ò壩

63¡¢ÏÂÃæ¸ø³öµÄ¼¯ºÏÖУ¬ÄÄÒ»¸ö²»ÊÇǰ׺Âë( )¡£ (1) {a£¬ab£¬110£¬a1b11} (2) {01£¬001£¬000£¬1} (3) {1£¬2£¬00£¬01£¬0210} (4) {12£¬11£¬101£¬002£¬0011}

´ð£º(1)

64¡¢n¸ö½áµãµÄÓÐÏòÍêȫͼ±ßÊýÊÇ( )£¬Ã¿¸ö½áµãµÄ¶ÈÊýÊÇ( )¡£

´ð£ºn(n-1),2n-2

65¡¢Ò»¸öÎÞÏòͼÓÐÉú³ÉÊ÷µÄ³ä·Ö±ØÒªÌõ¼þÊÇ( )¡£

´ð£ºËüÊÇÁ¬Í¨Í¼

66¡¢ÉèGÊÇÒ»¿ÃÊ÷£¬n,m·Ö±ð±íʾ¶¥µãÊýºÍ±ßÊý£¬Ôò (1) n=m (2) m=n+1 (3) n=m+1 (4) ²»ÄÜÈ·¶¨¡£

´ð£º£¨3£©

67¡¢ÉèT=¡´V,E¡µÊÇÒ»¿ÃÊ÷£¬Èô|V|>1£¬ÔòTÖÐÖÁÉÙ´æÔÚ( )ƬÊ÷Ò¶¡£

´ð£º2

68¡¢ÈκÎÁ¬Í¨ÎÞÏòͼGÖÁÉÙÓÐ( )¿ÃÉú³ÉÊ÷£¬µ±ÇÒ½öµ±G ÊÇ( )£¬GµÄÉú³ÉÊ÷Ö»ÓÐÒ»¿Ã¡£

´ð£º1£¬ Ê÷

69¡¢ÉèGÊÇÓÐn¸ö½áµãmÌõ±ßµÄÁ¬Í¨Æ½ÃæÍ¼£¬ÇÒÓÐk¸öÃæ£¬ÔòkµÈÓÚ:

(1) m-n+2 (2) n-m-2 (3) n+m-2 (4) m+n+2¡£

´ð£º£¨1£©

9

70¡¢ÉèTÊÇÒ»¿ÃÊ÷£¬ÔòTÊÇÒ»¸öÁ¬Í¨ÇÒ( )ͼ¡£

´ð£ºÎÞ¼òµ¥»ØÂ·

71¡¢ÉèÎÞÏòͼGÓÐ16Ìõ±ßÇÒÿ¸ö¶¥µãµÄ¶ÈÊý¶¼ÊÇ2£¬ÔòͼGÓÐ( )¸ö¶¥µã¡£ (1) 10 (2) 4 (3) 8 (4) 16

´ð£º£¨4£©

72¡¢ÉèÎÞÏòͼGÓÐ18Ìõ±ßÇÒÿ¸ö¶¥µãµÄ¶ÈÊý¶¼ÊÇ3£¬ÔòͼGÓÐ( )¸ö¶¥µã¡£

(1) 10 (2) 4 (3) 8 (4) 12

´ð£º(4)

73¡¢ÉèͼG=£¬V={a£¬b£¬c£¬d£¬e}£¬E={,,,,},ÔòGÊÇÓÐÏòͼ»¹ÊÇÎÞÏòͼ£¿

´ð£ºÓÐÏòͼ

74¡¢ÈÎÒ»ÓÐÏòͼÖУ¬¶ÈÊýÎªÆæÊýµÄ½áµãÓÐ( )¸ö¡£

´ð£ºÅ¼Êý

75¡¢¾ßÓÐ6 ¸ö¶¥µã£¬12Ìõ±ßµÄÁ¬Í¨¼òµ¥Æ½ÃæÍ¼ÖУ¬Ã¿¸öÃæ¶¼ÊÇÓÉ( )Ìõ±ßΧ³É£¿

(1) 2 (2) 4 (3) 3 (4) 5

´ð£º£¨3£©

76¡¢ÔÚÓÐn¸ö¶¥µãµÄÁ¬Í¨Í¼ÖУ¬Æä±ßÊý£¨ £©¡£

(1) ×î¶àÓÐn-1Ìõ (2) ÖÁÉÙÓÐn-1 Ìõ (3) ×î¶àÓÐnÌõ (4) ÖÁÉÙÓÐn Ìõ

´ð£º£¨2£©

77¡¢Ò»¿ÃÊ÷ÓÐ2¸ö2¶È¶¥µã£¬1 ¸ö3¶È¶¥µã£¬3¸ö4¶È¶¥µã£¬ÔòÆä1¶È¶¥µãΪ£¨ £©¡£

(1) 5 (2) 7 (3) 8 (4) 9

´ð£º£¨4£©

78¡¢ÈôÒ»¿ÃÍêÈ«¶þÔª£¨²æ£©Ê÷ÓÐ2n-1¸ö¶¥µã£¬ÔòËü£¨ £©Æ¬Ê÷Ò¶¡£

(1) n (2) 2n (3) n-1 (4) 2

10

´ð£º£¨1£©

79¡¢ÏÂÁÐÄÄÒ»ÖÖͼ²»Ò»¶¨ÊÇÊ÷£¨ £©¡£

(1) ÎÞ¼òµ¥»ØÂ·µÄÁ¬Í¨Í¼ (2) ÓÐn¸ö¶¥µãn-1Ìõ±ßµÄÁ¬Í¨Í¼ (3) ÿ¶Ô¶¥µã¼ä¶¼ÓÐͨ·µÄͼ (4) Á¬Í¨µ«É¾È¥Ò»Ìõ±ß±ã²»Á¬Í¨µÄͼ

´ð£º£¨3£©

80¡¢Á¬Í¨Í¼GÊÇÒ»¿ÃÊ÷µ±ÇÒ½öµ±GÖУ¨ £©¡£ (1) ÓÐЩ±ßÊǸî±ß (2) ÿÌõ±ß¶¼ÊǸî±ß

(3) ËùÓб߶¼²»ÊǸî±ß (4) ͼÖдæÔÚÒ»ÌõÅ·À­Â·¾¶

´ð£º£¨2£©

£¨ÊýÀíÂß¼­²¿·Ö£©

¶þ¡¢ÇóÏÂÁи÷¹«Ê½µÄÖ÷ÎöÈ¡·¶Ê½ºÍÖ÷ºÏÈ¡·¶Ê½£º 1¡¢(P¡úQ)?R

½â£º(P¡úQ)?R?(?P?Q )?R

?(?P?R)?(Q?R) £¨ÎöÈ¡·¶Ê½£© ?(?P?(Q??Q)?R)?((?P?P)?Q?R)

?(?P?Q?R)?(?P??Q?R)?(?P?Q?R)?(P?Q?R) ?(?P?Q?R)?(?P??Q?R)?(P?Q?R)£¨Ö÷ÎöÈ¡·¶Ê½£©

?((P¡úQ)?R)?(?P??Q??R)?(?P?Q??R)?(P??Q?R)

?(P?Q??R)?( P??Q??R)£¨Ô­¹«Ê½·ñ¶¨µÄÖ÷ÎöÈ¡·¶Ê½£©

(P¡úQ)?R?(P?Q?R)?(P??Q?R)?(?P?Q??R)

?(?P??Q?R)?(?P?Q?R)£¨Ö÷ºÏÈ¡·¶Ê½£©

2¡¢(P?R)?(Q?R)??P

½â£º (P?R)?(Q?R)??P£¨ÎöÈ¡·¶Ê½£©

?(P?(Q??Q)?R)?((P??P)?Q?R)?(?P?(Q??Q)?(R??R)) ?(P?Q?R)?(P??Q?R)?(P?Q?R)?(?P?Q?R)

?( ?P?Q?R)?( ?P?Q??R)?(?P??Q?R)?(?P??Q??R)

?(P?Q?R)?(P??Q?R)?(?P?Q?R)?(?P?Q??R) (?P??Q?R)?(?P??Q??R) (Ö÷ÎöÈ¡·¶Ê½)

11

? ?£¨(P?R)?(Q?R)??P£©

£¨Ô­¹«Ê½·ñ¶¨µÄÖ÷ÎöÈ¡·¶Ê½£© ?(P??Q??R)?(P?Q??R£©

(P?R)?(Q?R)??P ?(?P?Q?R)?(?P??Q?R)£¨Ö÷ºÏÈ¡·¶Ê½£©

3¡¢(?P¡úQ)?(R?P)

½â£º(?P¡úQ)?(R?P)

?(P?Q)?(R?P)£¨ºÏÈ¡·¶Ê½£©

?(P?Q?(R??R))?(P?(Q??Q))?R)

?(P?Q?R)?(P?Q??R)?(P?Q?R)?(P??Q?R) ?(P?Q?R)?(P?Q??R)?(P??Q?R)£¨Ö÷ºÏÈ¡·¶Ê½£© ?((?P¡úQ)?(R?P))

?(P??Q??R)?(?P?Q?R)?(?P??Q?R)?(?P?Q??R)

?(?P??Q??R)£¨Ô­¹«Ê½·ñ¶¨µÄÖ÷ºÏÈ¡·¶Ê½£©

(?P¡úQ)?(R?P)

?(?P?Q?R)?(P??Q??R)?(P?Q??R)?(P??Q?R)?(P?Q?R) £¨Ö÷ÎöÈ¡·¶Ê½£©

4¡¢Q¡ú(P??R)

½â£ºQ¡ú(P??R)

??Q?P??R£¨Ö÷ºÏÈ¡·¶Ê½£© ?£¨Q¡ú(P??R)£©

?(?P??Q??R)?(?P??Q?R)?(?P?Q??R)?(?P?Q?R)

?(P??Q?R)?(P?Q??R)?(P?Q?R£©£¨Ô­¹«Ê½·ñ¶¨µÄÖ÷ºÏÈ¡·¶Ê½£©

Q¡ú(P??R)

?(P?Q?R)?(P?Q??R)?(P??Q?R)?(P??Q??R)?(?P?Q??R)

?(?P??Q?R)?(?P??Q??R£©£¨Ö÷ÎöÈ¡·¶Ê½£©

5¡¢P¡ú(P?(Q¡úP))

½â£ºP¡ú(P?(Q¡úP))

??P?(P?(?Q?P)) ??P?P

? T (Ö÷ºÏÈ¡·¶Ê½)

12