北师大版六年级下册数学全册教学设计 下载本文

请大家看一看,摸一摸圆锥,你发现了什么?说给同桌听。 让一生上来指,回答后师板书: 顶点:1个 侧面(曲面) 面:2个 底面(圆) 同桌互指互说一遍。 认识圆锥的高

(1)显示两个圆锥一个高、一个低,问:观察这两个圆锥,你发现了什么?(高、低不同)是由圆柱的什么决定的?

下面我们来研究圆锥的高。你想知道什么?(什么是圆锥的高?圆锥有几条高?在哪里?怎么画等)请同学们带着这些问题来自学课本。 (2)讨论交流 A.什么是圆锥的高?

B.①拿出一个捏成圆锥体的橡皮泥,这条高在圆锥的哪里?看见吗?指母线,这条是不是圆锥的高?

②利用手中的工具,四人小组合作找出圆锥的高.(工具:小刀、绳子) ③交流汇报:

生汇报用小刀把圆锥切开,师问:切时要注意什么?这样切可以吗?显示斜切的过程,为什么?(和底面不垂直)这样切可以吗?显示沿着底面直径的平行线切的过程,为什么?(没有从顶点出发,找不到圆心)拉时要注意什么?(跟底面直径垂直)

C.通过操作,你能再来用自己的话说说什么是圆锥的高?圆锥的高有几条?为什么? D.在下发的练习纸上的立体图上画高,标上字母h。 3、测量圆锥的高

(1)我们在一个可切开的圆锥体上找到了它的高,那么在一些不可切的物体上怎样找到它的高,并知道高是多少呢?同桌互相商量一下,利用手中的工具,互相配合着试试看,量出圆锥体学具的高,有困难的可以看书本。 (2)操作

(3)汇报测量的步骤及测量结果。

师问:其实,同学们手中的圆锥高度都是一样的,为什么测量结果不太一致呢?你认为测量时要注意什么?

(圆锥平板必须放平、刻度处理、尺子必须竖直等) 4、认识圆锥侧面展开图 让学生把圆锥体学具侧面剪开,

问:侧面展开是什么形状?(扇形) 5、想象,对圆柱有一个完整的认识。

出示直角三角板:握住一个角的顶点旋转一周,会形成一个什么形体?三角形的三条边分别是圆锥体的什么? 三、巩固练习

1、找一找,哪些图形是圆锥体,哪些物体是由圆锥体和其它物体组成的? 2、判断

(1)圆锥有无数条高( ) (2)圆锥的底面是一个椭圆( )

(3)圆锥的侧面是一个曲面,展开后是一个扇形( ) (4)从圆锥的顶点到底面上任意一点的连线叫做圆锥的高( )

3、同桌交流说说圆柱和圆锥的特征,并比较它们的相同点和不同点。指名回答后,整理入下表: 四、总结

这节课我们学习了什么?除了上面表中的一些内容外,你还学到了什么知识?你还学到了什么本领?你还想了解有关圆锥的哪些知识? 五:作业:到生活中去找更多的圆锥形状的物体。 六、板书: 圆锥的认识

课堂反思:学生的学习气氛比较活跃,能够在愉快的环境中学习探究新知,思维比较敏捷,达到了预期效果。 第八课时 3.2

教学目标:培养学生自主探究的精神,在生活中发现数学问题,推导出圆锥体积公式并能利用公式解决问题。

教学重点:利用圆锥公式解决问题 教学难点:圆锥公式的推导过程。 一、发现问题:

昨天我们已经共同认识了一种新的立体图形——圆锥。 想一想:

你怎样才能知道这个圆锥的体积呢?(出示实心圆锥实物) 下面,咱们就共同来研究一下圆锥体积的计算公式。(板书课题) 二、探索问题:

为了便于同学们研究,老师这儿有一些圆锥,以小组为单位选择一个最喜欢的拿回去。

根据我们以往研究几何形体的经验,你打算怎样研究圆锥的体积呢? (转化是我们学习、研究数学,尤其是几何形体的一种重要思想。)

看来,我们这样实验下去是不能得出圆锥体积的计算公式的。圆锥与圆柱在体积上存在的不同关系是由什么决定的?

在学生的交流中,逐步完善圆锥体积的计算公式。 三、 解决问题

下面就应用我们自己总结出来的圆锥体积的计算公式,计算一下实验中应用的这个圆锥的体积。(底面积=80平方厘米,高=12厘米)(出示投影) 出示与圆锥等底等高的圆柱体,它的体积是多少?

有了圆锥体积的计算公式,要想知道这个圆锥形大沙堆的体积,你应该怎么办?(动画演示) 你能举出其他有关求圆锥体积的题目吗? 教师举例:(出示投影)

1、 一个圆锥的体积是40立方厘米,圆柱的体积是多少?

2、 一个圆柱的体积是120立方厘米,与它等底等高的圆锥的体积是多少? 四、 全课总结:

通过对圆锥体积的研究,你的最大收获是什么?

其实,世间万物都是普遍联系的,在学习、研究过程中,只要我们抓住事物之间的本质联系,大胆探索、勇于实践,成功就会永远属于我们。 五、 作业:数学书 14页 2 、3、4题 第八课时 3.3

教学目标:通过练习,使学生进一步掌握圆锥体积的计算。 教学重点:能够让学生进一步掌握圆锥体积的计算。 教学过程:一、复习:

提问:1、圆锥的体积公式是什么? 2、填空

(1) 一个圆锥体积是与它等底等高的圆柱体积的( ); (2) 圆柱的体积相当于和它等底等高的圆锥体积的( );

(3) 把一个圆柱削成一个最大的圆锥,削去的部分的体积相当于圆柱体积的( ),相当于圆锥体积的( )。 二、课堂练习

1、 求圆锥体积

(1) 底面积是12平方厘米,高是6厘米 (2) 底面半径是6厘米,高是4厘米 (3) 底面直径是10厘米,高是12厘米 (4) 底面周长是18.84厘米,高是3.5厘米。 2、 计算容积

(1) 一个圆锥形沙滩,低面半径是1.5米,高4.5分米,用这推沙子铺一个长5米,宽2米的沙坑.沙坑的沙子厚多少厘米?

(2) 一个圆锥形的麦堆,量得底面直径是4米,高是1.5米。按每立方米小麦重740千克,这堆小麦约重多少千克? 作业:5、6、7 第九课时 3.7 教学目标:

1、能在老师指导下,进行单元知识整理。加深理解和掌握圆柱和圆锥体积计算公式的推导,联系前面所学有关内容,形成有关体积计算的知识结构。

2、会应用公式熟练进行计算,独立解决一些实际问题。掌握一定的问题解决策略。 3、通过本课教学,培养学生主动学习的良好品质,开发学生智力,发展创造思维。 教学重点:会应用公式熟练进行计算,独立解决一些实际问题。 教学过程:一、进行知识整理。 回忆公式 二、针对性练习。

一个圆柱和一个圆锥等底等高,体积和是48立方厘米,圆柱体( ) 把一个圆柱削成一个最大的圆锥,削去18立方厘米,圆柱体积是( ) 圆柱的体积是和它等底等高的圆锥体积的( ) 圆锥的体积是和它等底等高的圆柱体积的( ) 圆柱的体积比和它等底等高的圆锥体积多( ) 圆锥的体积比和它等底等高圆柱的体积少( ) 三.选择题:

1、一个圆柱体,侧面展开图是正方形,它的边长是18.84厘米,它的底面半径是( )厘米。 A 0.3 B 10 C 3 D 6