µÚ£±Ò³ ¹²2Ò³
»´ º£ ¹¤ ѧ Ôº
14 ¨C 15ѧÄê µÚ 1 ѧÆÚ ¸ßµÈÊýѧ
B1 ÆÚÖÐÊÔ¾í
¶þ¡¢¼ÆËãÌ⣨±¾´óÌâ¹²4СÌ⣬ÿÌâ7·Ö£¬¹²28·Ö£©
111£®lim[?]£®
x?0ln(1?2x)2x½â£ºÔʽ?lim´ð°¸¼°ÆÀ·Ö±ê×¼ ÌâºÅ Ò» ¶þ 1 2 3 4 Èý ËÄ Îå Áù Æß ×Ü ·Ö ºË·ÖÈË 2x?ln(1?2x)2x?ln(1?2x) --------------------------------------3 ?lim2x?02xln(1?2x)x?04x1?(1?2x)?12x1?lim? £® L'Hlim---------------------------------------------4
·ÖÖµ 32 7 7 7 7 8 8 8 8 8 100 µÃ·Ö Ò»¡¢Ñ¡ÔñÌ⣨±¾´óÌâ¹²12СÌ⣬½ö×÷ǰ°ËÌ⣬ÿÌâ4·Ö£¬¹²32·Ö£© ?)?x,x?01.Éèf(x??,g(x)?5x?4£¬
Ôòf[g(0)]?-----------------------------(D) ?2?x,x?0(A) ?16 (B) ?4 (C) 4 (D) 16
12.lim2xx?0(1?x)? -----------------------------------------------------------------------------£¨D£©
(A) ?1e2 (B) ?e (C) 1e2 (D) 1e 3. y?2x?12?xµÄˮƽ½¥½üÏßΪ---------------------------------------------------------------(A)
(A) y??2 (B) y??12 (C) y?12 (D) y?2
4£®Éèfx()n1?l()?x?x,Ôò¸Ãº¯ÊýÔÚ(?1,0)ÄÚµÄͼÏóΪ----------------------------- (C)
(A) ÔöÇÒ°¼ (B) ¼õÇÒ°¼ (C) ÔöÇÒ͹ (D) ¼õÇÒ͹ 5¡¢µ±n???£¬n5,lnn5,ln5n,5nÇ÷ÓÚÎÞÇî´óËÙ¶È×îÂýµÄÊÇ ----------------------(B)
(A) n5 (B) lnn5 (C) ln5n (D) 5n
6.Èôf(x)µÄijһԺ¯ÊýΪcosx£¬Ôòf?(x)?---------------------------------------------(B) (A) ?sinx (B) ?cosx (C) sinx (D) cosx
7£®ÏÂÁÐʽ×ÓÖÐÕýÈ·µÄÊÇ--------------------------------------------------------------------------(B)
(A)
?df(x)?f(x) (B)d?f(x)dx?f(x)dx (C) d?f(x)dx?f(x) (D) d?f(x)dx?f(x)?C
8. ?csc2xdsinx?-----------------------------------------------------------------------------(A)
(A) ?cscx?C (B)cscx?C (C) ?cotx?C (D) cotx?C
x?04xx?04x22£®ÒÑÖªy?y(x)ÓÉ·½³Ìcos(xy)?ex?y?2ËùÈ·¶¨£¬Çóy'(0),y''(0)£®
½â£º?sin(xy)(y?xy?)?ex?y(1?y?)?0-----------------------------------------------------3
½«x?0,y?0´úÈëÉÏʽµÃy'(0)?1-----------------------------------------------------1 ÓÖ?sin(xy)(y?xy')'?[sin(xy)]'(y?xy')?(ex?y)'(1?y')?ex?yy''?0-----2 ½«x?0,y?0,y'(0)?1´úÈëÉÏʽµÃy''(0)?0£®--------------------------------------1
3.?sin3xcos4xdx. ½â£ºÔʽ??tan3xsecxdx??tan2x(tanxsecxdx)----------------------------------------3
??tan2xdsecx??(sec2x?1)dsecx -------------------------------------------2
?133secx?secx?C. --------------------------------------------------------------2 4£®?arctanxx2dx£® ½â£ºÔʽ???arctanxd1x -----------------------------------------------------------------------1
??arctaxnx??xda1rctaxn??arxcx?ta?nx(1?x2dx1)-------------------2 ??arctaxnx??xdx1??x1?x2dx -------------------------------------------------2 ??arctanxx?lnx?C£®(ȱC¿Û1·Ö)----------------------------------2
1?x2
µÚ£²Ò³ ¹²2Ò³
Èý¡¢¼ÆËãÌ⣨±¾Ìâ8·Ö£©
1Éèf?(lnx)?£¬ÇÒlimf(x)?0£¬Çóf(x)£®
x?+?1?x1u'½â£ºÁîlnx?u?x?e,f(u)?---------------------------------------------------2 u1?e1e?u?u f(u)??du?du??ln(1?e)?C-------------------------3 ?u?u1?e1?e(?)?0C?0limfxÁù¡¢¼ÆËãÌ⣨±¾Ìâ8·Ö£©
Éèf(x)µÄÒ»¸öÔº¯ÊýΪ6?x,Çóxf'(x)dx£®
2?½â£º£¨1£©ÓÉÌâÒâÖª£º
?f(x)dx?6?x?C£¬-------------------------------------------------2
?x2?x22f(x)?(6)'??2x6ln6--------------------------------------2
¹Ê?xf'(x)dx??xdf(x)?xf(x)??f(x)dx-------------------------------------------2
??(2x2ln6?1)6?x?C£®------------------------------------------------2
2 x?+?----------------------------------------------------------------2 ¹Ê f(x)??ln(1?e?x)£®--------------------------------------------------------------1
ËÄ¡¢¼ÆËãÌ⣨±¾Ìâ8·Ö£©
ÇóÇúÏß??x?etsin2tÔÚµã(0,1)´¦µÄÇÐÏß·½³Ì¼°·¨Ïß·½³Ì£® ?y?e2tcost½â£º
dydt?2e2tcost?e2tsint£¬----------------------------------------------------------------1 dxdt?et?sin2t?2cos2t?--------------------------------------------------------------------1 dydx?2cost?sintsin2t?2cos2t£¬----------------------------------------------------------------------2 ?x?0,y?1,t?0£¬k?dydxt=0?1------------------------------------------------------2
ÇÐÏß·½³ÌΪx?y?1?0
-------------------------------------------------------------------1
·¨Ïß·½³ÌΪ x?y?1?0£®-------------------------------------------------------------------1
Îå¡¢Ö¤Ã÷Ì⣨±¾Ìâ8·Ö£©
µ±0?x??2ʱ£¬sinx?tanx?2x .
Ö¤Ã÷£ºÁîf(x)=sinx?tanx?2x-------------------------------------------------------------£±
f'(x)?cosx?sec2x?2?2cosxsec2x?2=2(secx?1)?0 ---------------4 ÓÚÊÇf(x)Ϊ[0,?2)Éϵĵ¥µ÷Ôö¼Óº¯Êý£¬------------------------------------------------£±
¹Êµ±0?x??2ʱ£¬f(x)?f(0)?0(x?0)£¬±äÐμ´µÃ½áÂÛ£®---------------------2
Æß¡¢Ó¦ÓÃÌ⣨±¾Ìâ8·Ö£©
Èçͼ£¬Â½ÉÏC´¦µÄ»õÎïÒªÔ˵½½±ßB´¦£¬Éè½°¶ÎªÒ»Ö±Ïߣ¬Cµ½½°¶µÄ×î½üµãΪA£¬Cµ½AÖ®¾àΪ30¹«ÀBµ½AÖ®¾à100¹«ÀÒÑ֪ÿ¹«Àï½µØÔË·ÑΪˮ·Ô˷ѵÄ2±¶£¬ÎÊ£ºC´¦µÄ»õÎïÓ¦Ô˵½½±ßÄÄÒ»µãD´¦£¬ÔÙתˮÔË£¬²ÅÄÜʹ×Ü·ÑÓÃL×îС£¿
½â£ºÃ¿¹«Àïˮ·ÔË·ÑΪa£¬ A x D B ÔòL?2a302?x2?a(100?x)x??0,100?-----3
L'(x)?2ax302?x2?a?0£¬x?103---------------3 C
ÒòLmin=min{L(0),L(103),L(100)}=L(103)----------------------------1 ¹ÊC´¦µÄ»õÎïÓ¦Ô˵½½±ß¾àÀëµãA103¹«Àï´¦£¬ÔÙתˮÔË£¬²ÅʹL×îС£®-----------1