件,实现室内环境的高舒适性和系统的节能控制。
随着智能建筑在中国的飞速发展,楼宇自动控制技术和装置也得到快速的发展。对于楼宇自动控制而言,在确保建筑内舒适和安全的办公环境的同时,还要实现高效节能目的。因此诞生了综合现代计算机技术、现代控制技术、现代通信技术和现代图形显示技术的集散型控制系统。集散型中央空调监控系统在我国的智能建筑中得到广泛应用,其自动监视、测量、控制和管理功能是相当优越的,自动化程度高,节约了大量的劳动力和运行费用[3]。20世纪90年代未至21世纪初,我国在中央空调系统的控制领域,同时推出两项节能技术和产品:中央空调变频调速控制节能系统和中央空调变流量控制节能系统。将这两项技术相结合,在集散型中央空调监控系统的基础上,增加PLC和变频技术,并且与智能控制方法相结合,将原有的定流量系统改为变流量控制系统,从而使中央空调的各泵组和冷却塔风机的运行跟随负荷的变化而同步变化,就能够在保证负荷需求的前提下,实现中央空调系统的最大节能。
国内还有一些科研机构和企业的科研团体,也都开展了智能空调器的研制工作,其核心内容都集中在对单相压缩机变屏调速控制器和智能型室温控制器的研究,其研究成果还未见公开发表。智能型空调器是一个综合技术的聚合体,开发难度较大,现在的样机或产品在控制模式上、控制系统的稳定性和鲁棒性方面相比国际先进技术还存在很大的差距,有待于进一步的研究和提高。
1.2.2 中央空调变流量控制的发展
空调水系统最重要的目的是为空调系统的各末端装置提供能量的交
换,如何在满足这个要求的前提下尽可能的节能,是首先需要解决的问题。冷水系统的设计已经历了大约六、七十年的发展,并仍在不断地完善。在这个发展和完善的过程中总是不断的遇到新问题,如:冷水温差过小、水系统阻力损失过大、管网水力不平衡等问题,这些问题的不断解决最终推动了变流量技术的发展。
变流量空调技术的发展,与控制技术和水泵变频技术的发展是紧密相联的,可以说变流量技术是随着变频技术的出现才逐渐发展起来的[4]。这种技术在美国得到了广泛的研究和应用。在变频技术和数字控制技术出现之前,通常不考虑负荷的变化,冷冻水泵以固定的流量输运冷冻水到环路中。这种做法的后果不仅造成了能耗的浪费,还导致冷冻水系统的供、回水低温差运行。
从九十年代术期开始,随着计算机及电子技术的高速发展,变流量技术也得到深入的发展。水泵、变频驱动器、控制器等设备性能的提高大大满足了水系统控制的要求。随着变流量技术的成熟,在国外应用变流量技术开始成为暖通行业的标准。在目前应用的系统中往往偏重于设备的运行管理控制方法,具体控制方法上,基本上采用多个回路的PID控制[5]。各种类型的PID控制器因其参数物理意义明确、易于调整,并且具有一定的鲁棒性,因而得到了广泛的应用。PID控制器之所以能够在过程控制领域获得广泛地应用,是因为在实际的应用中PID控制器的设计可只借助于系统输出等反馈信息进行控制,从而减少了控制系统对对象模型的依赖性。
目前,中央空调控制方法有双位ONOFF控制、PID控制、最优控制、模糊控制等方法。以PID算法为核心的各种DDC控制系统是目前中央空
调工程和设备较普遍的使用方法,这种控制方法在工况较稳定的情况下,可以得到较好的控制效果。
1.3 本研究课题的主要工作
本文在分析和综合了PID控制的特点、发展趋势以及中央空调控制任务的基础上,对中央空调冷冻水机组采用传统PID控制,对基于USS通信协议的RS-485总线设计的控制系统进行了研究,并进行了组态设计,最终设计了中央空调变频节能控制系统。
研究工作的具体内容如下:
1、对空调系统变频控制进行了理论分析。
2、对变频控制系统进行设计,以实现工频变频切换功能。
3、设计了基于RS-485网络的控制系统。可将采集的出回水温度等数据信号通过网络送到主控系统,实现远距离传送。
4、文中对冷冻水机组的控制系统进行了硬件和软件的设计,采用西门子TD200文本显示屏作为人机界面,西门子S7-200 PLC作为主控制器,用一台变频器结合工频供电的方式,灵活的驱动冷冻水机组的三台水泵。
第2章 中央空调变流量控制的原理
2.1 中央空调系统的结构和原理
2.1.1 概述
空调即空气调节器,挂式空调是一种用于给空间区域提供处理空气温度变化的机组。它的功能是对该房间或区域内空气的温度、湿度、洁净度和空气流速等参数进行调节,以满足人体舒适或工艺过程的要求。
中央空调系统是一种大型的对建筑物进行集中空气调节并进行管理的设备,一般由空气处理设备、送(回)风机、送(回)风通道、空气分配装置及冷、热源等组成。根据需要,它们能组成不同形式的系统。在工程实际中,应从建筑物的用途和性质,热湿负荷特点、空调机房面积和位置、初投资和运行维修费用等许多方面去考虑,选择合理的空调系统。
2.1.2 制冷原理
气态制冷工质(如氟利昂)经压缩机压缩成高温高压气体后进入冷凝器,与水(空气)进行等压热交换,变成低温高压液态。液态工质经干燥过滤器去除水份、杂质,进入膨胀阀节流减压,成为低温低压液态工质,在蒸发器内气化。液体气化过程要吸收气化潜热,而且液体压力不同,其饱和温度(沸点)也不同,压力越低,饱和温度越低。例如,1kg的水,在绝对压力为0.00087MPa,饱和温度为5℃,气化时需要吸收2488.7KJ热量;1kg的氨,在1个标准大气压力(0.10133MPa)下,气化时需要吸收1369.59KJ热量,温度可抵达-33.33℃。因此,只要创造一定的低压条件,