图象 定义域 值域 R ________ 过定点________ 当x>0时,________;x<0时,当x>0时,________;x<0时,性质 ________ 在区间(-∞,+∞)上是________ ________ 在区间(-∞,+∞)上是________ 答案:(0,+∞) (0,1) y>1 0
(1)[教材习题改编]若函数f(x)=a(a>0,且a≠1)的图象经过点(-1,3),则f(2)=________.
1
答案: 9
1-1
解析:依题意可知a=3,解得a=,
3
x?1?x?1?21
所以f(x)=??,所以f(2)=??=. ?3??3?9
(2)[教材习题改编]函数y=答案:[0,+∞)
?1?x1-??的定义域为________. ?2?
?1?x解析:要使函数有意义,需满足1-??≥0,得x≥0.
?2?
指数函数常见误区:概念.
函数y=(a-3a+3)a是指数函数,则有a= ________.
- 5 -
2
x答案:2
解析:根据定义有a-3a+3=1,解得a=2或a=1(舍去).
2
1x[典题2] (1)[2017·陕西西安模拟]函数y=a-(a>0,a≠1)的图象可能是( )
a
A B
C D
[答案] D
1??[解析] 当a>1时1函数单调递增,且函数图象恒过点?0,1-?,
?a?
1
因为0<1-<1,故A,B均不正确;
a1??当0 ?a? - 6 - 1 因为1-<0,故选D. a(2)[2017·河南郑州模拟]已知函数f(x)=4+a( ) A.(1,5) C.(0,4) [答案] A x-1 的图象恒过定点P,则点P的坐标是 B.(1,4) D.(4,0) (3)[2017·河北衡水模拟]若曲线|y|=2+1与直线y=b没有公共点,则b的取值范围是________. [答案] [-1,1] [解析] 曲线|y|=2+1与直线y=b的图象如图所示. xx 由图象可得,如果|y|=2+1与直线y=b没有公共点,则-1≤b≤1.故b的取值范围是[-1,1]. [题点发散1] 若将本例(3)中“|y|=2+1”改为“y=|2-1|”,且与直线y=b有两个公共点,求b的取值范围. xxx 解:曲线y=|2-1|与直线y=b的图象如图所示. 由图象可得,如果曲线y=|2-1|与直线y=b有两个公共点,则b的取值范围是(0,1). xx - 7 - [题点发散2] 若将本例(3)改为:函数y=|2-1|在(-∞,k]上单调递减,求k的取值范围. 解:因为函数y=|2-1|的单调递减区间为(-∞,0],所以k≤0,即k的取值范围为(-∞,0]. [点石成金] 指数函数图象的画法及应用 1??x(1)画指数函数y=a(a>0,a≠1)的图象,应抓住三个关键点:(1,a),(0,1),?-1,?. xx?a? (2)与指数函数有关的函数的图象的研究,往 往利用相应指数函数的图象,通过平移、对称变换得到其图象. (3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解. 1.函数f(x)=1-e的图象大致是( ) |x| A B C D 答案:A - 8 -