ÐÅ ºÅ Óë ϵ ͳ
ʵ Ñé ½Ì ³Ì£¨Ö»Óд𰸣©
£¨ÊµÑ鱨¸æ£©
ÕâÃ´Íæ£¡
Ŀ¼
ʵÑéÒ» ÐźÅÓëϵͳµÄʱÓò·ÖÎö ..................................................................................................... 2
Èý¡¢ÊµÑéÄÚÈݼ°²½Öè ............................................................................................................... 2 ʵÑé¶þ Á¬ÐøÊ±¼äÐÅºÅµÄÆµÓò·ÖÎö ............................................................................................. 14
Èý¡¢ÊµÑéÄÚÈݼ°²½Öè ............................................................................................................. 14 ʵÑéÈý Á¬ÐøÊ±¼äLTIϵͳµÄƵÓò·ÖÎö .................................................................................... 35
Èý¡¢ÊµÑéÄÚÈݼ°²½Öè ............................................................................................................. 35 ʵÑéËÄ Í¨ÐÅϵͳ·ÂÕæ ................................................................................................................. 41
Èý¡¢ÊµÑéÄÚÈݼ°²½Öè ............................................................................................................. 41 ʵÑéÎå Á¬ÐøÊ±¼äLTIϵͳµÄ¸´ÆµÓò·ÖÎö .................................................................................. 51
Èý¡¢ÊµÑéÄÚÈݼ°²½Öè ............................................................................................................. 51
ʵÑéÒ» ÐźÅÓëϵͳµÄʱÓò·ÖÎö
Èý¡¢ÊµÑéÄÚÈݼ°²½Öè
ʵÑéǰ£¬±ØÐëÊ×ÏÈÔĶÁ±¾ÊµÑéÔÀí£¬¶Á¶®Ëù¸ø³öµÄÈ«²¿·¶Àý³ÌÐò¡£ÊµÑ鿪ʼʱ£¬ÏÈÔÚ¼ÆËã»úÉÏÔËÐÐÕâЩ·¶Àý³ÌÐò£¬¹Û²ìËùµÃµ½µÄÐźŵIJ¨ÐÎͼ¡£²¢½áºÏ·¶Àý³ÌÐòÓ¦¸ÃÍê³ÉµÄ¹¤×÷£¬½øÒ»²½·ÖÎö³ÌÐòÖи÷¸öÓï¾äµÄ×÷Ó㬴ӶøÕæÕýÀí½âÕâЩ³ÌÐò¡£
ʵÑéǰ£¬Ò»¶¨ÒªÕë¶ÔÏÂÃæµÄʵÑéÏîÄ¿×öºÃÏàÓ¦µÄʵÑé×¼±¸¹¤×÷£¬°üÀ¨ÊÂÏȱàдºÃÏàÓ¦µÄʵÑé³ÌÐòµÈÊÂÏî¡£
Q1-1£ºÐ޸ijÌÐòProgram1_1£¬½«dt¸ÄΪ0.2£¬ÔÙÖ´ÐиóÌÐò£¬±£´æÍ¼ÐΣ¬¿´¿´ËùµÃͼÐÎ
µÄЧ¹ûÈçºÎ£¿
dt = 0.01ʱµÄÐźŲ¨ÐÎ dt = 0.2ʱµÄÐźŲ¨ÐÎ
ÕâÁ½·ùͼÐÎÓÐÊ²Ã´Çø±ð£¬ÄÄÒ»·ùͼÐο´ÆðÀ´Óëʵ¼ÊÐźŲ¨ÐθüÏñ£¿ ´ð£º
Q1-2£ºÐ޸ijÌÐòProgram1_1£¬²¢ÒÔQ1_2ΪÎļþÃû´æÅÌ£¬²úÉúʵָÊýÐźÅx(t)=e-0.5t¡£ Òª
ÇóÔÚͼÐÎÖмÓÉÏÍø¸ñÏߣ¬²¢Ê¹Óú¯Êýaxis()¿ØÖÆÍ¼ÐεÄʱ¼ä·¶Î§ÔÚ0~2ÃëÖ®¼ä¡£È»ºóÖ´ÐиóÌÐò£¬±£´æËùµÄͼÐΡ£
ÐÞ¸ÄProgram1_1ºóµÃµ½µÄ³ÌÐòQ1_2ÈçÏ£º ÐźÅx(t)=e-0.5tµÄ²¨ÐÎͼ
clear, % Clear all variables
close all, % Close all figure windows dt = 0.2; % Specify the step of time variable t = -2:dt:2; % Specify the interval of time x = exp(-0.5*t); % Generate the signal plot(t,x) grid on;
axis ([0 2 0 1 ]) title('Sinusoidal signal x(t)')
xlabel('Time t (sec)')
Q1-3£ºÐ޸ijÌÐòProgram1_1£¬²¢ÒÔQ1_3ΪÎļþÃû´æÅÌ£¬Ê¹Ö®Äܹ»·ÂÕæ´Ó¼üÅÌÉÏÈÎÒâÊäÈë
µÄÒ»¸öÁ¬ÐøÊ±¼äÐźţ¬²¢ÀûÓøóÌÐò·ÂÕæÐźÅx(t)=e-2t¡£
ÐÞ¸ÄProgram1_1ºóµÃµ½µÄ³ÌÐòQ1_3ÈçÏ£º ÐźÅx(t)=e-2tµÄ²¨ÐÎͼ
clear, close all, dt = 0.2; t = -2:dt:2; x=input('Input x(t):');
plot(t,x) grid on;
axis ([0 2 -1 1 ]) title('Sinusoidal signal x(t)') xlabel('Time t (sec)')
Q1-4£º½«ÊµÑéÔÀíÖÐËù¸øµÄµ¥Î»³å¼¤Ðźź͵¥Î»½×Ô¾Ðźŵĺ¯ÊýÎļþÔÚMATLABÎļþ±à¼
Æ÷ÖбàдºÃ£¬²¢·Ö±ðÒÔÎļþÃûdeltaºÍu´æÈëworkÎļþ¼ÐÖÐÒÔ±ãÓÚʹÓá£
³Ð´º¯ÊýÎļþdeltaÈçÏ£º ³Ð´º¯ÊýÎļþuÈçÏ£º
function y = delta(t) % Unit step function dt = 0.01; function y = u(t)
y = (u(t)-u(t-dt))/dt; y = (t>=0); % y = 1 for t > 0, else y = 0
Q1-5£ºÐ޸ijÌÐòProgram1_4£¬²¢ÒÔQ1_5ΪÎļþÃû´æÅÌ£¬ÀûÓÃaxis()º¯Êý£¬½«Í¼Ðδ°¿ÚµÄ
ºá×ø±ê·¶Î§¸ÄΪ-2¡Ün¡Ü5£¬×Ý×ø±ê·¶Î§¸ÄΪ-1.5¡Ü x ¡Ü1.5¡£
ÐÞ¸ÄProgram1_4ºóµÃµ½µÄ³ÌÐòQ1_5ÈçÏ£º ÐźŵIJ¨ÐÎͼ
clear, close all, n = -5:5;
x = [zeros(1,4), 0.1, 1.1, -1.2, 0, 1.3, zeros(1,2)]; stem (n,x,'.') grid on,
axis([-2 5 -1.5 1.5]);
title ('A discrete-time sequence x[n]') xlabel ('Time index n')
Q1-6£º·ÂÕÕÇ°ÃæµÄʾÀý³ÌÐòµÄ±àд·½·¨£¬±àдһ¸öMATLAB³ÌÐò£¬ÒÔQ1_6ΪÎļþÃû´æÅÌ£¬
ʹ֮Äܹ»ÔÚͬһ¸öͼÐδ°¿ÚÖеÄÁ½¸ö×ÓͼÖзֱð»æÖÆÐźÅx[n]=0.5|n| ºÍx(t)=cos(2¦Ðt)[u(t)-u(t-3)]¡£ÒªÇóÑ¡ÔñµÄʱ¼ä´°Äܹ»±íÏÖ³öÐźŵÄÖ÷Òª²¿·Ö£¨»òÌØÕ÷£©¡£
±àдµÄ³ÌÐòQ1_6ÈçÏ£º ÐźÅx[n]=0.5|n| µÄ²¨ÐÎͼºÍÐźÅx(t)=cos(2¦Ðt)[u(t)-u(t-3)]µÄ²¨ÐÎ
ͼ
clear,close all, t = -1:0.01:4;
xt = cos(2*pi*t).*(u(t)-u(t-3)); n=-5:5;
xn=(0.5).^abs(n); subplot(211)
plot(t,xt) grid on,
title ('Original signal x(t)') subplot(212)
stem(n,xn,'.') grid on,
title ('Original signal x(n)') xlabel ('Time t (sec)')
Q1-7£º¸ù¾ÝʾÀý³ÌÐòµÄ±à³Ì·½·¨£¬±àдһ¸öMATLAB³ÌÐò£¬ÒÔQ1_7ΪÎļþÃû´æÅÌ£¬Óɸø
¶¨ÐźÅx(t) = e-0.5tu(t) ÇóÐźÅy(t) = x(1.5t+3)£¬²¢»æÖƳöx(t) ºÍy(t)µÄͼÐΡ£
±àдµÄ³ÌÐòQ1_7ÈçÏ£º
±àд²úÉúx(t)µÄº¯ÊýÎļþx.m function y=x(t) y=exp(-0.5*t).*u(t);
clear,close all, t = -3:0.01:4;
xt = x(t); % Generate the original signal x(t) yt=x(1.5*t+3); subplot(211)
plot(t,xt) % Plot x(t) grid on,
title ('Original signal x(t)') subplot(212)
plot(t,yt) % Plot x(t) grid on,
title ('Original signal y(t)') xlabel ('Time t (sec)')
ÐźÅx(t)µÄ²¨ÐÎͼ ÐźÅy(t) = x(1.5t+3) µÄ²¨ÐÎͼ
Q1-8£º¸ø¶¨Ò»¸öÀëɢʱ¼äÐźÅx[n] = u[n] ¨C u[n-8]£¬·ÂÕÕʾÀý³ÌÐòProgram1_5£¬±àд³ÌÐò
Q1_8£¬²úÉúx[n]µÄ×óÒÆÐòÁÐx1[n] = x[n+6]ºÍÓÒÒÆÐòÁÐx2[n] = x[n-6]£¬²¢ÔÚͬһ¸öͼÐδ°¿ÚµÄÈý¸ö×ÓͼÖзֱð»æÖÆÕâÈý¸öÐòÁеÄͼÐΡ£
±àдµÄ³ÌÐòQ1_8ÈçÏ£º
±àд²úÉúx(t)µÄº¯ÊýÎļþxx.m
function y=xx(n) y=u(n)-u(n-8); clear,close all, n = -10:15;
x =xx(n); % Generate the original signal x(n)
x1 = xx(n+6); % Shift x(t) to the left by 2 second to get x1(n+6) x2 =xx(n-6); % Shift x(t) to the right by 2 second to get x2(n-6) subplot(311)
stem(n,x,'.') % Plot x(t) grid on,
title ('Original signal x(n)') subplot (312)
stem (n,x1,'.') % Plot x1(t) grid on,
title ('Left shifted version of x(n)') subplot (313)
stem (n,x2,'.') % Plot x2(t) grid on,
title ('Right shifted version of x(n)') xlabel ('Time t (sec)')
ÐźŲ¨ÐÎͼ
Q1-9£º±àд³ÌÐòQ1_9£¬Ê¹Ö®Äܹ»½ÓÊÜÒÔ¼üÅÌ·½Ê½ÊäÈëµÄ¶¨ÒåÔÚ²»Í¬Ê±¼ä¶ÎµÄÁ½¸ö²»Í¬Á¬
ÐøÊ±¼äÐźŲ¢Íê³É¾í»ýÔËË㣬·Ö±ð»æÖÆÕâÁ½¸öÐźż°Æä¾í»ýµÄ½á¹ûµÄͼÐΣ¬Í¼Ðΰ´ÕÕ2?2·Ö¸î³ÉËĸö×Óͼ¡£
±àдµÄ³ÌÐòQ1_9ÈçÏ£º
clear;close all; dt = 0.01;
t0=input('Input first signal t0:');t1=input('Input first first signal t1:'); tx = t0:dt:t1;
x = input('Input first signal variable(tx) :');
t2=input('Input second signal t0:');t3=input('Input second signal t1:'); th=t2:dt:t3;
h = input('Input second signal variable(th) :')
y = dt*conv(x,h); % Compute the convolution of x(t) and h(t) subplot(221)
plot(tx,x), grid on, title('Signal x(t)') xlabel('Time t sec') subplot(222)
plot(th,h), grid on, title('Signal h(t)') xlabel('Time t sec') subplot(313) plot(y), grid on,
convolution of x(t) and xlabel('Time t sec')ÐźÅ(t)*h(t)µÄ²¨ÐÎͼ
title('The h(t)')
x (t)¡¢h(t)ºÍx
Q1-10£º¸ø¶¨Á½¸öÀëɢʱ¼äÐòÁÐ
x[n] = 0.5n{u[n]-u[n-8]} h[n] = u[n]-u[n-8]
±àд³ÌÐòQ1_10£¬¼ÆËãËüÃǵľí»ý£¬²¢·Ö±ð»æÖÆx[n]¡¢h[n]ºÍËüÃǵľí»ýy[n]µÄͼÐΡ£
±àдµÄ³ÌÐòQ1_10ÈçÏ£º
n=0:10;
x = (0.5).^n.*(u(n)-u(n-8)); h = u(n)-u(n-8);
y =conv(x,h); % Compute the convolution of x(t) and h(t) subplot(221)
stem(n,x,'.'), grid on, title('Signal x(n)') subplot(222)
stem(n,h,'.'), grid on, title('Signal h(n)') subplot(212)
stem(y), grid on, title('The convolution of x(n) and h(n)'), xlabel('Time t sec');
ÐźÅx[n]¡¢h[n]ºÍy[n]µÄ²¨ÐÎͼ
Q1-11ÒÑÖªÒ»¸öÐòÁÐΪ
x[n]???n,?0,0?n?4otherwise
±àдMATLAB³ÌÐòQ1_11£¬Äܹ»½«x[n]ÒÔN = 8ΪÖÜÆÚ½øÐÐÖÜÆÚÑÓÍØµÃµ½Ò»¸öÖÜÆÚΪN =8µÄÖÜÆÚÐòÁÐy[n]£¬²¢·Ö±ð»æÖÆx[n]ºÍy[n]ͼÐΡ£
±àдµÄ³ÌÐòQ1_11ÈçÏ£º
U4.m
function y=u4(n) y=n.*(u(n)-u(n-5));
Q1¡ª¡ª11.m clear, close all; n =-16:32 x=u4(n); T = 8; y = 0; for k = -2:4;
y =y+u4(n-k*T); end
subplot(211) stem(n,x,'.'); grid on,
title ('Original signal x(n)') xlabel('Time t sec') subplot(212) stem(n,y);
title ('period signal x(n)') xlabel('Time t sec')
grid on,ÐźÅx[n]µÄ²¨ÐÎͼ ÐźÅy[n]µÄ²¨ÐÎͼ
Q1-12 ·ÂÕÕ·¶Àý³ÌÐòProgram1_7£¬±àд³ÌÐòQ1_12£¬¼ÆËã²¢»æÖÆÓÉÈçÏÂ΢·Ö·½³Ì±íʾµÄϵ
ͳÔÚÊäÈëÐźÅΪx(t) = (e-2t - e-3t)u(t)ʱµÄÁã״̬ÏìÓ¦ºÍÄãÊÖ¹¤¼ÆËãµÃµ½µÄϵͳÁã״̬ÏìÓ¦ÇúÏß¡£
d2y(t)dy(t)?3?2y(t)?8x(t) 2dtdtÊÖ¹¤¼ÆËãµÃµ½µÄϵͳÁã״̬ÏìÓ¦µÄÊýѧ±í´ïʽÊÇ£º
±àдµÄ³ÌÐòQ1_12ÈçÏ£º ÓÃMATLAB»æÖƵÄÊÖ¹¤¼ÆËãµÄϵͳÏìÓ¦
clear, close all;
num = input('Type in the right coefficient vector of differential equation£º'); den = input('Type in the left coefficient vector of differential equation£º'); t = 0:0.01:8;
x = input('Type in the expression of the input signal x(t)£º'); y=lsim(num,den,x,t);plot(t,y)
Ö´ÐгÌÐòQ1_12µÃµ½µÄϵͳÏìÓ¦
Q1-13£ºÀûÓóÌÐòQ1_9£¬ÑéÖ¤¾í»ýµÄÏà¹ØÐÔÖÊ¡£
(a) ÑéÖ¤ÐÔÖÊ£ºx(t)*?(t)?x(t)
Ñ¡ÔñÐźÅx(t)µÄÊýѧ±í´ïʽΪ£ºsin(t)
x(t)¡¢¦Ä(t)ºÍx(t)*¦Ä(t)µÄ²¨ÐÎ
ÑéÖ¤ËùµÃ½áÂÛÊÇ£º
(b) ÑéÖ¤ÐÔÖÊ£ºx(t)*?(t?t0)?x(t?t0)
Ñ¡ÔñÐźÅx(t)µÄÊýѧ±í´ïʽΪ£ºsin(t) t0=2
x(t)¡¢¦Ä(t-t0) ºÍx(t)*?(t?t0)µÄ²¨ÐÎ
ÑéÖ¤ËùµÃ½áÂÛÊÇ£º
(c) ÑéÖ¤ÐÔÖÊ£ºx(t?t1)*?(t?t2)?x(t?t2)*?(t?t1)?x(t?t1?t2)
Ñ¡ÔñÐźÅx(t)µÄÊýѧ±í´ïʽΪ£º sin(t) Ñ¡ÔñµÄt1 = 2 3 Ãë¡£
Ã룬t2 =
Ö´ÐгÌÐòQ1_9£¬ÊäÈëÐźÅx(t-t1) ºÍ¦Ä(t-t2) µÄÊýѧ±í´ïʽ£¬µÃµ½µÄÐźż°Æä¾í»ýµÄ²¨ÐÎͼÈç
주
Ö´ÐгÌÐòQ1_9£¬ÊäÈëÐźÅx(t-t2) ºÍ¦Ä(t-t1) µÄÊýѧ±í´ïʽ£¬µÃµ½µÄÐźż°Æä¾í»ýµÄ²¨ÐÎͼÈç
주
ÑéÖ¤ËùµÃ½áÂÛÊÇ£º
(d) ÑéÖ¤ÐÔÖÊ£ºx(t)*u(t)??t??x(?)d?
Ñ¡ÔñÐźÅx(t)£¨½¨ÒéÑ¡ÔñÒ»¸öʱÏÞÐźţ©µÄÊýѧ±í´ïʽΪ£ºu(t)-u(t-3)
?t??x(?)d?µÄÊýѧ±í´ïʽΪ£º
tÊÖ¹¤»æÖƵÄ???x(?)d?²¨ÐÎÈçÏ£º
Ö´ÐгÌÐòQ1_9£¬ÊäÈëÐźÅx(t) ºÍu(t) µÄÊýѧ±í´ïʽ£¬µÃµ½µÄÐźż°Æä¾í»ýµÄ²¨ÐÎͼÈçÏ£º
ÑéÖ¤ËùµÃ½áÂÛÊÇ£º
(e) ÑéÖ¤ÐÔÖÊ£ºx(t)*h(t?t0)?x(t?t0)*h(t)
Ñ¡ÔñÐźÅx(t)µÄÊýѧ±í´ïʽΪ£º sin(t) Ñ¡ÔñÐźÅh(t)µÄÊýѧ±í´ïʽΪ£ºsin(t) Ñ¡ÔñµÄt0=£º1 Ö´ÐгÌÐò
주
Q1_9£¬ÊäÈëÐźÅx(t) ºÍh(t-t0) µÄÊýѧ±í´ïʽ£¬µÃµ½µÄÐźż°Æä¾í»ýµÄ²¨ÐÎͼÈç
Ö´ÐгÌÐò
주
Q1_9£¬ÊäÈëÐźÅx(t-t0) ºÍh(t) µÄÊýѧ±í´ïʽ£¬µÃµ½µÄÐźż°Æä¾í»ýµÄ²¨ÐÎͼÈç
ÑéÖ¤ËùµÃ½áÂÛ
Q1-14£º×öÈçÏÂ×ܽ᣺
ÊÇ£º
1¡¢ÐźÅÓëϵͳ·ÖÎö£¬¾ÍÊÇ»ùÓÚÐźŵķֽ⣬ÔÚʱÓòÖУ¬ÐźÅÖ÷Òª·Ö½â³É£º
2¡¢Ð´³ö¾í»ýµÄÔËËã²½Ö裬²¢Ì¸Ì¸Äã¶Ô¾í»ýµÄһЩ»ù±¾ÐÔÖʵÄÀí½â¡£ÀûÓÃMATLAB¼ÆËã¾í»ýµÄº¯ÊýÊÇʲô£¿ÈçºÎʹÓã¿
3¡¢ÔÚʱÓòÖУ¬ÃèÊöÒ»¸öÁ¬ÐøÊ±¼äLTIϵͳµÄÊýѧģÐÍÓУº
4¡¢MATLABÊÇÈçºÎ±íʾһ¸öÓÉ΢·Ö·½³ÌÃèÊöµÄÁ¬ÐøÊ±¼äLTIϵͳµÄ£¿Çó½âÁ¬ÐøÊ±¼äLTIϵͳµÄµ¥Î»³å¼¤ÏìÓ¦¡¢µ¥Î»½×Ô¾ÏìÓ¦ÒÔ¼°ÏµÍ³ÔÚijһ¸öÊäÈëÐźÅ×÷ÓÃϵÄÁã״̬ÏìÓ¦µÄMATLABº¯ÊýÓÐÄÄЩ£¿
ËÄ¡¢ÊµÑ鱨¸æÒªÇó
1¡¢°´ÒªÇóÍêÕûÊéдÄãËù±àдµÄÈ«²¿MATLAB³ÌÐò
2¡¢Ïêϸ¼Ç¼ʵÑé¹ý³ÌÖеÄÓйØÐźŲ¨ÐÎͼ£¨´æÓÚ×Ô´øµÄUÅÌÖУ©£¬Í¼ÐÎÒªÓÐÃ÷È·µÄ±êÌ⡣ȫ²¿µÄMATLABͼÐÎÓ¦¸ÃÓôòÓ¡»ú´òÓ¡£¬È»ºóÌùÔÚ±¾ÊµÑ鱨¸æÖеÄÏàӦλÖ㬽ûÖ¹¸´Ó¡¼þ¡£
3¡¢ÊµÊÂÇóÊǵػشðÏà¹ØÎÊÌ⣬ÑϽû³Ï®¡£
±¾ÊµÑéÍê³Éʱ¼ä£º Äê Ô ÈÕ
ʵÑé¶þ Á¬ÐøÊ±¼äÐÅºÅµÄÆµÓò·ÖÎö
Èý¡¢ÊµÑéÄÚÈݼ°²½Öè
ʵÑéǰ£¬±ØÐëÊ×ÏÈÔĶÁ±¾ÊµÑéÔÀí£¬¶Á¶®Ëù¸ø³öµÄÈ«²¿·¶Àý³ÌÐò¡£ÊµÑ鿪ʼʱ£¬ÏÈÔÚ¼ÆËã»úÉÏÔËÐÐÕâЩ·¶Àý³ÌÐò£¬¹Û²ìËùµÃµ½µÄÐźŵIJ¨ÐÎͼ¡£²¢½áºÏ·¶Àý³ÌÐòÓ¦¸ÃÍê³ÉµÄ¹¤×÷£¬½øÒ»²½·ÖÎö³ÌÐòÖи÷¸öÓï¾äµÄ×÷Ó㬴ӶøÕæÕýÀí½âÕâЩ³ÌÐò¡£ ʵÑéǰ£¬Ò»¶¨ÒªÕë¶ÔÏÂÃæµÄʵÑéÏîÄ¿×öºÃÏàÓ¦µÄʵÑé×¼±¸¹¤×÷£¬°üÀ¨ÊÂÏȱàдºÃÏàÓ¦µÄʵÑé³ÌÐòµÈÊÂÏî¡£
Q2-1 ±àд³ÌÐòQ2_1£¬»æÖÆÏÂÃæµÄÐźŵIJ¨ÐÎͼ£º
?1n?11?0t) x(t)?cos?(0t)?cos3?(0t)?cos5?(0t)????sin()cosn(235n?1nÆäÖУ¬?0 = 0.5¦Ð£¬ÒªÇó½«Ò»¸öͼÐδ°¿Ú·Ö¸î³ÉËĸö×Óͼ£¬·Ö±ð»æÖÆcos(?0t)¡¢cos(3?0t)¡¢cos(5?0t)
ºÍx(t) µÄ²¨ÐÎͼ£¬¸øÍ¼ÐμÓtitle£¬Íø¸ñÏߺÍx×ø±ê±êÇ©£¬²¢ÇÒ³ÌÐòÄܹ»½ÓÊÜ´Ó¼üÅÌÊäÈëµÄºÍʽÖеÄÏîÊý¡£
³Ð´³ÌÐòQ2_1ÈçÏ£º
clear,close all
T = 2; dt = 0.00001; t = -2*pi:dt:2*pi; w0=0.5*pi; x1 = cos(w0*t);
x3=(-1/3)*cos(3*w0*t); x5=(1/5)*cos(5*w0*t);
N = input('Type in the number of the harmonic components N = :'); y=0;
for q = 1:N; % Synthesiz the periodic signal y(t) from the finite Fourier series y = y+(1/q).*sin((q*pi)/2).*cos(q*w0*t); end;
subplot(221),
plot(t,x1), title('The original signal cos(w0t)'); grid on; axis([-2*pi,2*pi,-1,1]), xlabel('Time t') subplot(223),
plot(t,x5), title('The original signal (1/5)cos(5w0t)'); grid on; axis([-2*pi,2*pi,-1,1]), xlabel('Time t') subplot(222)
plot(t,x3), title('The original signal (-1/3)cos(3w0t)'); grid on; axis([-2*pi,2*pi,-1,1]), xlabel('Time t') subplot(224)
plot(t,y), title('The synthesis signal of x(t)'); grid on; axis([-10,10,-1,1]), xlabel('Index N')
Ö´ÐгÌÐòQ2_1ËùµÃµ½µÄͼÐÎÈçÏ£ºN=10
Q2-2 ¸ø³ÌÐòProgram2_1Ôö¼ÓÊʵ±µÄÓï¾ä£¬²¢ÒÔQ2_2´æÅÌ£¬Ê¹Ö®Äܹ»¼ÆËãÀýÌâ2-1ÖеÄ
ÖÜÆÚ·½²¨ÐźŵĸµÀïÒ¶¼¶ÊýµÄϵÊý£¬²¢»æÖƳöÐźŵķù¶ÈÆ×ºÍÏàλÆ×µÄÆ×Ïßͼ¡£
ͨ¹ýÔö¼ÓÊʵ±µÄÓï¾äÐÞ¸ÄProgram2_1¶ø³ÉµÄ³ÌÐòQ2_2³Ð´ÈçÏ£º
clear,close all
T = 2; dt = 0.00001; t = -2:dt:2; x1 = u(t)-u(t-1-dt); x = 0;
for m = -1:1
x = x + u(t-m*T) - u(t-1-m*T-dt); % Periodically extend x1(t) to form a periodic signal end
w0 = 2*pi/T;
N = input('Type in the number of the harmonic components N = :'); L = 2*N+1; for k = -N:1:N;
ak(N+1+k) = (1/T)*x1*exp(-j*k*w0*t')*dt; end
phi = angle(ak); y=0;
for q = 1:L; % Synthesiz the periodic signal y(t) from the finite Fourier series y = y+ak(q)*exp(j*(-(L-1)/2+q-1)*2*pi*t/T); end;
subplot(221)
plot(t,x), title('The original signal x(t)'), axis([-2,2,-0.2,1.2]),grid on; subplot(222)
k=-N:N; stem(ak), title('The ak of x(t)'), axis([-1,1,-0.4,0.4]),grid on; subplot(223)
k=-N:N; stem(k,abs(ak),'k.'), title('The amplitude |ak| of x(t)'), axis([-N,N,-0.1,0.6]),grid on;
subplot(224)
stem(k,phi,'r.'), title('The phase phi(k) of x(t)'), axis([-N,N,-2,2]), xlabel('Index k'),grid on;
Ö´ÐгÌÐòQ2_2µÃµ½µÄͼÐÎ
Q2-3 ·´¸´Ö´ÐгÌÐòProgram2_2£¬Ã¿´ÎÖ´ÐиóÌÐòʱ£¬ÊäÈ벻ͬµÄNÖµ£¬²¢¹Û²ìËùºÏ³ÉµÄ
ÖÜÆÚ·½²¨Ðźš£Í¨¹ý¹Û²ì£¬ÄãÁ˽âµÄ¼ª²®Ë¹ÏÖÏóµÄÌØµãÊÇ£º
N=5 N=10
N=20 N=40
1¡¢ÖÜÆÚÐźŵĸµÀïÒ¶¼¶ÊýÓëGIBBSÏÖÏó
¸ø¶¨ÈçÏÂÁ½¸öÖÜÆÚÐźţº
x1(t)1x2(t)1t?2?1
t
12?2?0.20.22Q2-4 ·Ö±ðÊÖ¹¤¼ÆËãx1(t) ºÍx2(t) µÄ¸µÀïÒ¶¼¶ÊýµÄϵÊý¡£ ÐźÅx1(t) ÔÚÆäÖ÷ÖÜÆÚÄÚµÄÊýѧ±í´ïʽΪ£º
t+1 -1 ¼ÆËãx1(t) µÄ¸µÀïÒ¶¼¶ÊýµÄϵÊýµÄ¼ÆËã¹ý³ÌÈçÏ£º k = -10:10;ak=0; ak = 1/2.* (sin((k)*pi/2)./((k)*pi/2)) N=-10:10; stem(k,ak); ͨ¹ý¼ÆËãµÃµ½µÄx1(t)µÄ¸µÀïÒ¶¼¶ÊýµÄϵÊýµÄÊýѧ±í´ïʽÊÇ£º1/2.* (sin((k)*pi/2)./((k)*pi/2)) ÐźÅx2(t) ÔÚÆäÖ÷ÖÜÆÚÄÚµÄÊýѧ±í´ïʽΪ£º 1 |t|<0.2 0 0.2<|t|<1 ¼ÆËãx2(t) µÄ¸µÀïÒ¶¼¶ÊýµÄϵÊýµÄ¼ÆËã¹ý³ÌÈçÏ£º k = -10:10;ak=0; ak =sin(k*pi*0.2)./(k*pi) N=-10:10; stem(k,ak); ͨ¹ý¼ÆËãµÃµ½µÄx1(t)µÄ¸µÀïÒ¶¼¶ÊýµÄϵÊýµÄÊýѧ±í´ïʽÊÇ£ºsin(k*pi*0.2)./(k*pi) ÓÃMATLAB°ïÖúÄã¼ÆËã³öÄãÊÖ¹¤¼ÆËãµÄ¸µÀïÒ¶¼¶ÊýµÄϵÊýak´Ó-10µ½10¹²21¸öϵÊý¡£ ´ÓÃüÁî´°¿ÚÉϳдx1(t)µÄ21¸öϵÊýÈçÏ£º ak = Columns 1 through 8 0.0000 0.0354 -0.0000 -0.0455 0.0000 0.0637 -0.0000 -0.1061 Columns 9 through 16 0.0000 0.3183 NaN 0.3183 0.0000 -0.1061 -0.0000 0.0637 Columns 17 through 21 0.0000 -0.0455 -0.0000 0.0354 0.0000 ´ÓÃüÁî´°¿ÚÉϳдx2(t)µÄ21¸öϵÊýÈçÏ£º Columns 1 through 8 -0.0000 -0.0208 -0.0378 -0.0432 -0.0312 0.0000 0.0468 0.1009 Columns 9 through 16 0.1514 0.1871 NaN 0.1871 0.1514 0.1009 0.0468 0.0000 Columns 17 through 21 -0.0312 -0.0432 -0.0378 -0.0208 -0.0000 Q2-5 ·ÂÕÕ³ÌÐòProgram2_1£¬±àд³ÌÐòQ2_5£¬ÒÔ¼ÆËãx1(t)µÄ¸µÀïÒ¶¼¶ÊýµÄϵÊý¡£ ³ÌÐòQ2_5ÈçÏ£º ±àдº¯Êýx1.m function y=x1(t) y1=t+1;y2=1-t; y=y1.*(-1 Q2_5.m clear,close all T = 2; dt = 0.00001; t = -8:dt:8; x11 = x1(t); x = 0; for m = -8:8 x = x + x1(t-m*T); % Periodically extend x1(t) to form a periodic signal end w0 = 2*pi/T; N = 10; L = 2*N+1; for k = -N:1:N; ak(N+1+k) = (1/T)*x11*exp(-j*k*w0*t')*dt; end phi = angle(ak); y=0; for q = 1:L; % Synthesiz the periodic signal y(t) from the finite Fourier series y = y+ak(q)*exp(j*(-(L-1)/2+q-1)*2*pi*t/T); end; subplot(211), plot(t,x), title('The original signal x(t)'), axis([-8,8,-0.2,1.2]),grid on, subplot(212) k=-N:N; stem(k,ak,'k.'), title('The factor ak of x(t)'), axis([-N,N,-0.1,0.6]),grid on, Ö´ÐгÌÐòQ2_5ËùµÃµ½µÄx1(t)µÄ¸µÀïÒ¶¼¶ÊýµÄak´Ó-10µ½10¹²21¸öϵÊýÈçÏ£º Columns 1 through 5 0.0000 + 0.0000i 0.0025 + 0.0000i 0.0000 + 0.0000i 0.0041 - 0.0000i 0.0000 - 0.0000i Columns 6 through 10 0.0081 + 0.0000i -0.0000 - 0.0000i 0.0225 - 0.0000i -0.0000 - 0.0000i 0.2026 + 0.0000i Columns 11 through 15 0.5000 0.2026 - 0.0000i -0.0000 + 0.0000i 0.0225 + 0.0000i -0.0000 + 0.0000i Columns 16 through 20 0.0081 - 0.0000i 0.0000 + 0.0000i 0.0041 + 0.0000i 0.0000 - 0.0000i 0.0025 - 0.0000i Column 21 0.0000 - 0.0000i ÓëÄãÊÖ¹¤¼ÆËãµÄakÏà±È½Ï£¬ÊÇ·ñÏàͬ£¬ÈçÓв»Í¬£¬ÊǺÎÔÒòÔì³ÉµÄ£¿ ´ð£º Q2-6 ·ÂÕÕ³ÌÐòProgram2_1£¬±àд³ÌÐòQ2_6£¬ÒÔ¼ÆËãx2(t) µÄ¸µÀïÒ¶¼¶ÊýµÄϵÊý£¨²»»æÍ¼£©¡£ ³ÌÐòQ2_6ÈçÏ£º ±àдº¯Êýx2.m function y=x2(t) y1=1;y2=1; y=y1.*(-0.2 Q2_6.m clear,close all T = 2; dt = 0.00001; t = -8:dt:8; x11 = x2(t); x = 0; for m = -8:8 x = x + x2(t-m*T); % Periodically extend x1(t) to form a periodic signal end w0 = 2*pi/T; N = 10; L = 2*N+1; for k = -N:1:N; ak(N+1+k) = (1/T)*x11*exp(-j*k*w0*t')*dt; end phi = angle(ak); y=0; for q = 1:L; % Synthesiz the periodic signal y(t) from the finite Fourier series y = y+ak(q)*exp(j*(-(L-1)/2+q-1)*2*pi*t/T); end; subplot(211), plot(t,x), title('The original signal x(t)'), axis([-8,8,-0.2,1.2]),grid on, subplot(212) k=-N:N; stem(k,ak,'k.'), title('The factor ak of x(t)'), axis([-N,N,-0.1,0.6]),grid on, Ö´ÐгÌÐòQ2_6ËùµÃµ½µÄx2(t)µÄ¸µÀïÒ¶¼¶ÊýµÄak´Ó-10µ½10¹²21¸öϵÊýÈçÏ£º Columns 1 through 5 0.0000 - 0.0000i -0.0208 + 0.0000i -0.0378 - 0.0000i -0.0432 + 0.0000i -0.0312 + 0.0000i Columns 6 through 10 -0.0000 + 0.0000i 0.0468 + 0.0000i 0.1009 + 0.0000i 0.1514 - 0.0000i 0.1871 + 0.0000i Columns 11 through 15 0.2000 0.1871 - 0.0000i 0.1514 + 0.0000i 0.1009 - 0.0000i 0.0468 - 0.0000i Columns 16 through 20 -0.0000 - 0.0000i -0.0312 - 0.0000i -0.0432 - 0.0000i -0.0378 + 0.0000i -0.0208 - 0.0000i Column 21 0.0000 + 0.0000i ÓëÄãÊÖ¹¤¼ÆËãµÄakÏà±È½Ï£¬ÊÇ·ñÏàͬ£¬ÈçÓв»Í¬£¬ÊǺÎÔÒòÔì³ÉµÄ£¿ ´ð£º Q2-7 ·ÂÕÕ³ÌÐòProgram2_2£¬±àд³ÌÐòQ2_7£¬¼ÆËã²¢»æÖƳöÔʼÐźÅx1(t) µÄ²¨ÐÎͼ£¬Óà ÓÐÏÞÏî¼¶ÊýºÏ³ÉµÄy1(t) µÄ²¨ÐÎͼ£¬ÒÔ¼°x1(t) µÄ·ù¶ÈƵÆ×ºÍÏàλƵÆ×µÄÆ×Ïßͼ¡£ ±àд³ÌÐòQ2_7ÈçÏ£º clear,close all T = 2; dt = 0.00001; t = -8:dt:8; x11 = x1(t); x = 0; for m = -8:8 x = x + x1(t-m*T); % Periodically extend x1(t) to form a periodic signal end w0 = 2*pi/T; N = 5; L = 2*N+1; for k = -N:1:N; ak(N+1+k) = (1/T)*x11*exp(-j*k*w0*t')*dt; end phi = angle(ak); y=0; for q = 1:L; % Synthesiz the periodic signal y(t) from the finite Fourier series y = y+ak(q)*exp(j*(-(L-1)/2+q-1)*2*pi*t/T); end; phi = angle(ak); y=0; for q = 1:L; % Synthesiz the periodic signal y(t) from the finite Fourier series y = y+ak(q)*exp(j*(-(L-1)/2+q-1)*2*pi*t/T); end; subplot(221), plot(t,x), title('The original signal x(t)'), axis([-8,8,-0.2,1.2]), subplot(223), plot(t,y), title('The synthesis signal y(t)'), axis([-8,8,-0.2,1.2]), xlabel('Time t'), subplot(222) k=-N:N; stem(k,abs(ak),'k.'), title('The amplitude |ak| of x(t)'), axis([-N,N,-0.1,0.6]) subplot(224) stem(k,phi,'r.'), title('The phase phi(k) of x(t)'), axis([-N,N,-2,2]), xlabel('Index k') Ö´ÐгÌÐòQ2_7£¬ÊäÈëN = 5ËùµÃµ½µÄͼÐÎÈçÏ£º ·´¸´Ö´ÐгÌÐòQ2_7£¬ÊäÈ벻ͬµÄNÖµ£¬¹Û²ìºÏ³ÉµÄÐźŲ¨ÐÎÖУ¬ÊÇ·ñ»á²úÉúGibbsÏÖÏó£¿ ÎªÊ²Ã´£¿£» ´ð£º 2. Á¬ÐøÊ±¼ä·ÇÖÜÆÚÐźŵĸµÀïÒ¶±ä»» ¸ø¶¨Á½¸öʱÏÞÐźÅ: ?2?t??1?t?2,??x1(t)??1,?1?t?1 x2(t)?cos(t)[u(t?1)?u(t?1)] 2??t?2,1?t?2?Q2-8 ÀûÓõ¥Î»½×Ô¾ÐźÅu(t)£¬½«x1(t) ±íʾ³ÉÒ»¸öÊýѧ±Õʽ±í´ïʽ£¬²¢ÊÖ¹¤»æÖÆx1(t) ºÍx2(t) µÄʱÓò²¨ÐÎͼ¡£ ÐźÅx1(t) µÄ±ÕʽÊýѧ±í´ïʽΪ£º x1(t) = £ºy1=t+2;y2=1;y3=-t+2;y=y1.*(-2<=t&t<-1)+y2.*(-1<=t&t<1)+y3.*(1<=t&t<2); ÊÖ¹¤»æÖƵÄx1(t)µÄʱÓò²¨ÐÎͼ ÊÖ¹¤»æÖƵÄx2(t)µÄʱÓò²¨ÐÎͼ function y=x28(t) y1=t+2; y2=1; y3=-t+2; y=y1.*(-2<=t&t<-1)+y2.*(-1<=t&t<1)+y3.*(1<=t&t<2); clear,close all T = 2; dt = 0.00001; t = -5:dt:5; x1 = x28(t).*(u(t+2)-u(t-2)); x2=cos(pi/2*t).*(u(t+1)-u(t-1)); subplot(211), plot(t,x1,'.'),title('The original signal x1(t)'), axis([-5,5,-1,1]), xlabel('Time t') subplot(212), plot(t,x2,'.'),title('The original signal x2(t)'),axis([-5,5,-1,1]), xlabel('Time t') Q2-9ÊÖ¹¤¼ÆËãx1(t) ºÍx2(t) µÄ¸µÀïÒ¶±ä»»(ÈçÄܹ»ÓøµÀïÒ¶±ä»»µÄÐÔÖʼÆËã×îºÃ)£¬²¢ÊÖ¹¤ »æÖƳöËüÃǵķù¶ÈÆ×ºÍÏàλÆ×£» ¼ÆËãx1(t) µÄ¸µÀïÒ¶±ä»»µÄ¹ý³Ì£º ¼ÆËãµÃµ½µÄx1(t) µÄ¸µÀïÒ¶±ä»»µÄÊýѧ±í´ïʽΪ£º clear,close all T = 0.01; dw = 0.1; %ʱ¼äºÍƵÂʱ仯µÄ²½³¤ t = -10:T:10; w = -4*pi:dw:4*pi; xx=x28(t); X=x28(t)*exp(-j*t'*w)*T; %¸µÀïÒ¶±ä»» X1=abs(X); %¼ÆËã·ù¶ÈÆ× phai=angle(X); %¼ÆËãÏàλÆ× subplot(221); plot(t,xx),title('The original signal x1(t)'),axis([-10,10,-1,2]),xlabel('Time t'),grid on; subplot(222) plot(w,X),title('The Fourier Transform of x1(t) '),axis([-4*pi,4*pi,-1,3.5]),xlabel('f(jw)'),grid on; subplot(223); plot(w,X1), title('The amplitude of f(jw) )'), axis([-4*pi,4*pi,-1,3.5]),xlabel('f(jw)'),grid on; subplot(224); plot(w,phai),title('The phase of f(jw)'),axis([-pi,pi,-4,4]),xlabel('f(jw)'),grid on; ¼ÆËãx2(t) µÄ¸µÀïÒ¶±ä»»µÄ¹ý³Ì£º clear,close all T = 0.01; dw = 0.1; %ʱ¼äºÍƵÂʱ仯µÄ²½³¤ t = -10:T:10; w = -4*pi:dw:4*pi; xx=cos(pi/2*t).*(u(t+1)-u(t-1)); X=xx*exp(-j*t'*w)*T; %¸µÀïÒ¶±ä»» X1=abs(X); %¼ÆËã·ù¶ÈÆ× phai=angle(X); %¼ÆËãÏàλÆ× subplot(221); plot(t,xx),title('The original signal x1(t)'),axis([-10,10,-1,2]),xlabel('Time t'),grid on; subplot(222) plot(w,X),title('The Fourier Transform of x1(t) '),axis([-4*pi,4*pi,-1,3.5]),xlabel('f(jw)'),grid on; subplot(223); plot(w,X1), title('The amplitude of f(jw) )'), axis([-4*pi,4*pi,-1,3.5]),xlabel('f(jw)'),grid on; subplot(224); plot(w,phai),title('The phase of f(jw)'),axis([-pi,pi,-4,4]),xlabel('f(jw)'),grid on; ¼ÆËãµÃµ½µÄx2(t) µÄ¸µÀïÒ¶±ä»»µÄÊýѧ±í´ïʽΪ£º ÊÖ¹¤»æÖƵÄx1(t)µÄ·ù¶ÈƵÆ×ͼ ÊÖ¹¤»æÖƵÄx2(t)µÄ·ù¶ÈƵÆ×ͼ Q2-10 ±àдMATLAB³ÌÐòQ2_10£¬Äܹ»½ÓÊÜ´Ó¼üÅÌÊäÈëµÄʱÓòÐźűí´ïʽ£¬¼ÆËã²¢»æÖƳö ÐźŵÄʱÓò²¨ÐΡ¢·ù¶ÈÆ×¡£ ³ÌÐòQ2_10³Ð´ÈçÏ clear,close all T = 0.01; dw = 0.1; %ʱ¼äºÍƵÂʱ仯µÄ²½³¤ t = -10:T:10; w = -4*pi:dw:4*pi; xx= input('Input the signal (t) :'); X=xx*exp(-j*t'*w)*T; %¸µÀïÒ¶±ä»» X1=abs(X); %¼ÆËã·ù¶ÈÆ× phai=angle(X); %¼ÆËãÏàλÆ× subplot(211); plot(t,xx),title('The original signal x(t)'),axis([-10,10,-1,2]),xlabel('Time t'),grid on; subplot(223) plot(w,X1),title('The amplitude of f(jw) '),xlabel('f(jw)'),grid on; subplot(224); plot(w,phai),title('The phase of f(jw)'),axis([-pi,pi,-4,4]),xlabel('f(jw)'),grid on; Ö´ÐгÌÐòQ2_10£¬ÊäÈëÐźŠÏ£º X1(t)=exp(-t) x1(t)µÄÊýѧ±í´ïʽ£¬µÃµ½µÄÐźÅʱÓò²¨ÐΡ¢·ù¶ÈÆ×ºÍÏàλÆ×Èç Ö´ÐгÌÐòQ2_10£¬ÊäÈëÐźŠÏ£º x2(t)µÄÊýѧ±í´ïʽ£¬µÃµ½µÄÐźÅʱÓò²¨ÐΡ¢·ù¶ÈÆ×ºÍÏàλÆ×Èç Q2-11 Ð޸ijÌÐòQ2_10£¬²¢ÒÔ³Ì ÐòÊÜ Q2_11ΪÎļþÃû´æÅÌ£¬ÒªÇóÄܹ»½Ó´Ó¼üÅÌÊäÈëµÄʱÓòÐźűí´ïʽ£¬¼Æ ËãÆä¸µÀïÒ¶±ä»»£¬²¢·Ö±ð»æÖÆÆä¸µÀïÒ¶±ä»»µÄʵ²¿¡¢Ð鲿¡¢·ù¶ÈƵÆ×ºÍÏàλƵÆ×µÄͼÐΡ£ ±àдµÄ³ÌÐòQ2_11ÈçÏ£º clear,close all T = 0.01; dw = 0.1; %ʱ¼äºÍƵÂʱ仯µÄ²½³¤ t = -10:T:10; w = -4*pi:dw:4*pi; xx= input('Input the signal (t) :'); X=xx*exp(-j*t'*w)*T; %¸µÀïÒ¶±ä»» X1=abs(X); %¼ÆËã·ù¶ÈÆ× phai=angle(X); %¼ÆËãÏàλÆ× realx=real(X); imagx=imag(X); subplot(311); plot(t,xx),title('The original signal x(t)'),axis([-10,10,-1,2]),xlabel('Time t'),grid on; subplot(323) plot(w,realx),title('The real of f(jw) '),xlabel('f(jw)'),grid on; subplot(324); plot(w,imagx),title('The imag of f(jw)'),axis([-pi,pi,-4,4]),xlabel('f(jw)'),grid on; subplot(325) plot(w,X1),title('The amplitude of f(jw) '),xlabel('f(jw)'),grid on; subplot(326); plot(w,phai),title('The phase of f(jw)'),axis([-pi,pi,-4,4]),xlabel('f(jw)'),grid on; Ñ¡¶¨Êʵ±µÄÐźţ¬¸ÃÐźŵÄʱÓò±í´ïʽΪ£ºu(t)-u(t-3) Ö´ÐÐÄã±àдºÃµÄMATLAB³ÌÐòQ2_11£¬ÊäÈëÄãÑ¡¶¨µÄÐźŵÄÊýѧ±í´ïʽ£¬»æÖƳöµÄ¸ÃÐźŠµÄ¸µÀïÒ¶±ä»»µÄͼÐÎÈçÏ£º Q2-12 Ð޸ijÌÐòQ2_11£¬²¢ÒÔQ2_12´æÅÌ£¬ÒªÇó³ÌÐòÄܽÓÊÜ´Ó¼üÅÌÊäÈëÐźŵÄʱÓò±í´ïʽ£¬ ¼ÆËã²¢»æÖÆÐźŵÄʱÓò²¨ÐΡ¢Ðźŵķù¶ÈƵÆ×ºÍÏàλƵÆ×ͼ¡£ ±àдµÄ³ÌÐòQ2_12ÈçÏ£º clear,close all T = 0.01; dw = 0.1; %ʱ¼äºÍƵÂʱ仯µÄ²½³¤ t = -10:T:10; w = -4*pi:dw:4*pi; xx= input('Input the signal (t) :'); X=xx*exp(-j*t'*w)*T; %¸µÀïÒ¶±ä»» X1=abs(X); %¼ÆËã·ù¶ÈÆ× phai=angle(X); %¼ÆËãÏàλÆ× subplot(211); plot(t,xx),title('The original signal x(t)'),axis([-10,10,-1,2]),xlabel('Time t'),grid on; subplot(223) plot(w,X1),title('The amplitude of f(jw) '),xlabel('f(jw)'),grid on; subplot(224); plot(w,phai),title('The phase of f(jw)'),axis([-pi,pi,-4,4]),xlabel('f(jw)'),grid on; Q2-13Ñ¡ÔñÒ»¸öʱÏÞÐźţ¬Ö´ÐгÌÐòQ2_12ÒÔÑéÖ¤---¶ÔżÐÔÖÊ¡£ Ñ¡¶¨Êʵ±µÄÐźÅx1(t)£¬¸ÃÐźŵÄʱÓò±í´ïʽΪ£ºx1(t) =u(t+1/2)-u(t-1/2) Ö´ÐгÌÐòQ2_12£¬»æÖƳöµÄ¸ÃÐźŵĸµÀïÒ¶±ä»»µÄͼÐÎÈçÏ£º Ñ¡¶¨Êʵ±µÄÐźÅx2(t)£¬ÒªÇóÆäÊýѧ±í´ïʽÓëx1(t) µÄ¸µÀïÒ¶±ä»»µÄÊýѧ±í´ïʽÏàͬ£¬¸ÃÐźŠµÄʱÓò±í´ïʽΪ£ºx2(t) = ÔÙÒ»´ÎÖ´ÐгÌÐòQ2_12£¬»æÖƳöµÄÐźÅx2(t)µÄ¸µÀïÒ¶±ä»»µÄͼÐÎÈçÏ£º ±È½ÏÕâÁ½´ÎÖ´ÐеĽá¹û£¬¼òÊö¶ÔżÐÔÖÊ£¬²¢ËµÃ÷ÑéÖ¤½áÂÛ¡£ ´ð£º Q2-14Ñ¡ÔñÒ»¸öʱÏÞÐźţ¬Ö´ÐгÌÐòQ2_12ÒÔÑéÖ¤ÐÔÖÊ---ʱ¼ä³ß¶È±ä»»¡£ Ñ¡¶¨Êʵ±µÄÐźÅx3(t)£¬¸ÃÐźŵÄʱÓò±í´ïʽΪ£ºx3(t) =£º exp(-t) Ö´ÐгÌÐòQ2_12£¬»æÖƳöµÄ¸ÃÐźŵĸµÀïÒ¶±ä»»µÄͼÐÎÈçÏ£º Ñ¡¶¨ÐźÅx4(t) = x3(2t)£¬¸ÃÐźŵÄʱÓò±í´ïʽΪ£ºx4(t) =£º exp(-2t) £¬ÔÙÒ»´ÎÖ´ÐгÌÐòQ2_12£¬»æÖƳöµÄÐźÅx4(t)µÄ¸µÀïÒ¶±ä»»µÄͼÐÎÈçÏ£º ±È½ÏÕâÁ½´ÎÖ´ÐеĽá¹û£¬¼òÊöʱ¼ä³ß¶È±ä»»ÐÔÖÊ£¬²¢ËµÃ÷ÑéÖ¤½áÂÛ¡£ ´ð£º Q2-15Ñ¡ÔñÒ»¸öʱÏÞÐźţ¬Ö´ÐгÌÐòQ2_12ÒÔÑéÖ¤ÐÔÖÊ---Ê±ÒÆ¡£ Ñ¡¶¨Êʵ±µÄÐźŠx1(t)£¬¸ÃÐźŵÄʱÓò±í´ïʽΪ£ºx1(t) = £º exp(-t).*u(t) £¬Ö´ÐгÌÐò Q2_12£¬»æÖƳöµÄ¸ÃÐźŵĸµÀïÒ¶±ä»»µÄͼÐÎÈçÏ£º Ñ¡¶¨ÐźÅx2(t) = x1(t-1)£¬¸ÃÐźŵÄʱÓò±í´ïʽΪ£ºx2(t) = £º exp(-t+3).*u(t-3) £¬ÔÙÒ»´Î Ö´ÐгÌÐòQ2_12£¬»æÖƳöµÄÐźÅx2(t) µÄ¸µÀïÒ¶±ä»»µÄͼÐÎÈçÏ£º ±È½ÏÕâÁ½´ÎÖ´ÐеĽá¹û£¬¼òÊöÊ±ÒÆÐÔÖÊ£¬²¢ËµÃ÷ÑéÖ¤½áÂÛ¡£ ´ð£º Q2-16Ñ¡ÔñÒ»¸öºÏÊʵÄÐźţ¬Ö´ÐгÌÐòQ2_12ÒÔÑéÖ¤ÐÔÖÊ---ÆµÒÆ(Multiplication by ej?0t)¡£ Ñ¡¶¨Êʵ±µÄÐźÅx1(t)£¬¸ÃÐźŵÄʱÓò±í´ïʽΪ£ºx1(t) = £º exp(-t).*u(t) £¬Ö´ÐгÌÐòQ2_12£¬ »æÖƳöµÄ¸ÃÐźŵĸµÀïÒ¶±ä»»µÄͼÐÎÈçÏ£º Ñ¡¶¨ÐźÅx2(t) = ej?0tx1(t)£¬ÆäÖÐ?0 = 2 £¬ÔÙÒ»´ÎÖ´ÐгÌÐòQ2_12£¬»æÖƳöµÄÐźÅx2(t) µÄ¸µÀïÒ¶±ä»»µÄͼÐÎÈçÏ£º ±È½ÏÕâÁ½´ÎÖ´ÐеĽá¹û£¬¼òÊöÆµÒÆ(Multiplication by ej?0t)ÐÔÖÊ£¬²¢ËµÃ÷ÑéÖ¤½áÂÛ¡£ ´ð£º Q2-17£º»Ø´ðÈçÏÂÎÊÌ⣺ 1¡¢´ÓÐźŷֽâµÄ½Ç¶È£¬Ì¸Ì¸Äã¶ÔÖÜÆÚÐźŵĸµÀïÒ¶¼¶ÊýµÄÀí½â¡£ ´ð£º 2¡¢´ÓÐźŷֽâµÄ½Ç¶È£¬Ì¸Ì¸Äã¶Ô¸µÀïÒ¶±ä»»¼°ÆäÎïÀíÒâÒåµÄÀí½â£¬Ì¸Ì¸Äã¶ÔÐÅºÅÆµÆ×¸ÅÄîµÄÀí½â¡£ ËÄ¡¢ÊµÑ鱨¸æÒªÇó 1¡¢°´ÒªÇóÍêÕûÊéдÄãËù±àдµÄÈ«²¿MATLAB³ÌÐò 2¡¢Ïêϸ¼Ç¼ʵÑé¹ý³ÌÖеÄÓйØÐźŲ¨ÐÎͼ£¨´æÓÚ×Ô´øµÄUÅÌÖУ©£¬Í¼ÐÎÒªÓÐÃ÷È·µÄ±êÌ⡣ȫ²¿µÄMATLABͼÐÎÓ¦¸ÃÓôòÓ¡»ú´òÓ¡£¬È»ºóÌùÔÚ±¾ÊµÑ鱨¸æÖеÄÏàӦλÖ㬽ûÖ¹¸´Ó¡¼þ¡£ 3¡¢ÊµÊÂÇóÊǵػشðÏà¹ØÎÊÌ⣬ÑϽû³Ï®¡£ ±¾ÊµÑéÍê³Éʱ¼ä£º Äê Ô ÈÕʵÑéÈý Á¬ÐøÊ±¼äLTIϵͳµÄƵÓò·ÖÎö Èý¡¢ÊµÑéÄÚÈݼ°²½Öè ʵÑéǰ£¬±ØÐëÊ×ÏÈÔĶÁ±¾ÊµÑéÔÀí£¬Á˽âËù¸øµÄMATLABÏà¹Øº¯Êý£¬¶Á¶®Ëù¸ø³öµÄÈ«²¿·¶Àý³ÌÐò¡£ÊµÑ鿪ʼʱ£¬ÏÈÔÚ¼ÆËã»úÉÏÔËÐÐÕâЩ·¶Àý³ÌÐò£¬¹Û²ìËùµÃµ½µÄÐźŵIJ¨ÐÎͼ¡£²¢½áºÏ·¶Àý³ÌÐòËùÍê³ÉµÄ¹¤×÷£¬½øÒ»²½·ÖÎö³ÌÐòÖи÷¸öÓï¾äµÄ×÷Ó㬴ӶøÕæÕýÀí½âÕâЩ³ÌÐò¡£ ʵÑéǰ£¬Ò»¶¨ÒªÕë¶ÔÏÂÃæµÄʵÑéÏîÄ¿×öºÃÏàÓ¦µÄʵÑé×¼±¸¹¤×÷£¬°üÀ¨ÊÂÏȱàдºÃÏàÓ¦µÄʵÑé³ÌÐòµÈÊÂÏî¡£ ¸ø¶¨Èý¸öÁ¬ÐøÊ±¼äLTIϵͳ£¬ËüÃǵÄ΢·Ö·½³Ì·Ö±ðΪ d2y(t)dy(t)dx(t)?1?25y(t)?ϵͳ1£º Eq.3.1 dtdtdt2ϵͳ2£º ϵͳ3£º dy(t)dx(t)?y(t)??x(t) Eq.3.2 dtdtd6y(t)d5y(t)d4y(t)d3y(t)d2y(t)dy(t)?10?48?148?306?401?262y(t)?262x(t)dtdt6dt5dt4dt3dt2 Q3-1 Ð޸ijÌÐò Eq.3.3 Program3_1£¬²¢ÒÔQ3_1´æÅÌ£¬Ê¹Ö®Äܹ»Äܹ»½ÓÊܼüÅÌ·½Ê½ÊäÈëµÄ΢·Ö·½ ³ÌϵÊýÏòÁ¿¡£²¢ÀûÓøóÌÐò¼ÆËã²¢»æÖÆÓÉ΢·Ö·½³ÌEq.3.1¡¢Eq.3.2ºÍEq.3.3ÃèÊöµÄϵͳµÄ·ù ¶ÈÏìÓ¦ÌØÐÔ¡¢ÏàλÏìÓ¦ÌØÐÔ¡¢ÆµÂÊÏìÓ¦µÄʵ²¿ºÍƵÂÊÏìÓ¦µÄÐ鲿ÇúÏßͼ¡£ ³Ð´³ÌÐòQ3_1ÈçÏ£º Ö´ÐгÌÐòQ3_1£¬»æÖƵÄϵͳ1µÄƵÂÊÏìÓ¦ÌØÐÔÇúÏßÈçÏ£º ´Óϵͳ1µÄ·ù¶ÈƵÂÊÏìÓ¦ÇúÏß¿´£¬ÏµÍ³1ÊǵÍͨ¡¢¸ßͨ¡¢È«Í¨¡¢´øÍ¨»¹ÊÇ´ø×èÂ˲¨Æ÷£¿ ´ð£º Ö´ÐгÌÐòQ3_1£¬»æÖƵÄϵͳ2µÄƵÂÊÏìÓ¦ÌØÐÔÇúÏßÈçÏ£º ´Óϵͳ2µÄ·ù¶ÈƵÂÊÏìÓ¦ÇúÏß¿´£¬ÏµÍ³2µÍͨ¡¢¸ßͨ¡¢È«Í¨¡¢´øÍ¨»¹ÊÇ´ø×èÂ˲¨Æ÷£¿ ´ð£º Ö´ÐгÌÐòQ3_1£¬»æÖƵÄϵͳ3µÄƵÂÊÏìÓ¦ÌØÐÔÇúÏßÈçÏ£º ´Óϵͳ3µÄ·ù¶ÈƵÂÊÏìÓ¦ÇúÏß¿´£¬ÏµÍ³3ÊǵÍͨ¡¢¸ßͨ¡¢È«Í¨¡¢´øÍ¨»¹ÊÇ´ø×èÂ˲¨Æ÷£¿ ´ð£º ÕâÈý¸öϵͳµÄ·ù¶ÈƵÂÊÏìÓ¦¡¢ÏàλƵÂÊÏàÓ¦¡¢ÆµÂÊÏìÓ¦µÄʵ²¿ÒÔ¼°ÆµÂÊÏìÓ¦µÄÐ鲿·Ö±ð¾ß ÓкÎÖֶԳƹØÏµ£¿Çë¸ù¾Ý¸µÀïÒ¶±ä»»µÄÐÔÖÊ˵Ã÷Ϊʲô»á¾ßÓÐÕâЩ¶Ô³Æ¹ØÏµ£¿ ´ð£º Q3-2 ±àд³ÌÐò Q3_2£¬Ê¹Ö®Äܹ»Äܹ»½ÓÊܼüÅÌ·½Ê½ÊäÈëµÄÊäÈëÐźÅx(t)µÄÊýѧ±í´ïʽ£¬Ïµ ͳ΢·Ö·½³ÌµÄϵÊýÏòÁ¿£¬¼ÆËãÊäÈëÐźŵķù¶ÈƵÆ×£¬ÏµÍ³µÄ·ù¶ÈƵÂÊÏìÓ¦£¬ÏµÍ³Êä³öÐźÅy(t)µÄ·ù¶ÈƵÆ×£¬ÏµÍ³µÄµ¥Î»³å¼¤ÏìÓ¦h(t)£¬²¢°´ÕÕÏÂÃæµÄͼQ3-2µÄ²¼¾Ö£¬»æÖƳö¸÷¸öÐźŵÄʱÓòºÍƵÓòͼÐΡ£ ͼQ3-2 Äã±àдµÄ³ÌÐòQ3_2³Ð´ÈçÏ£º Ö´ÐгÌÐòQ3_2£¬ÊäÈëÐźÅx(t) = sin(t) + sin(8t)£¬ÊäÈëÓÉEq.3.3ÃèÊöµÄϵͳ¡£µÃµ½µÄͼÐÎÈçÏ£º ´Ë´¦Õ³ÌûÖ´ÐгÌÐòQ3_2ËùµÃµ½µÄͼÐÎ ÇëÊÖ¹¤»æÖƳöÐźÅx(t) = sin(t) + sin(8t) µÄ·ù¶ÈƵÆ×ͼÈçÏ£º ÄãÊÖ¹¤»æÖƵÄÐźÅx(t) = sin(t) + sin(8t) µÄ·ù¶ÈƵÆ×ͼÓëÖ´ÐгÌÐòQ3_2µÃµ½µÄx(t) = sin(t) + sin(8t) µÄ·ù¶ÈƵÆ×ͼÊÇ·ñÏàͬ£¿È粻ͬ£¬ÊǺÎÔÒòÔì³ÉµÄ£¿ ´ð£º Ö´ÐгÌÐòQ3_2µÃµ½µÄx(t) = sin(t) + sin(8t) µÄ·ù¶ÈƵÆ×ͼʵ¼ÊÉÏÊÇÁíÍâÒ»¸öÐźÅx1(t)µÄ·ù¶È ƵÆ×£¬Õâ¸öÐźŵÄʱÓòÊýѧ±í´ïʽΪ x1(t) = ÇëÀûÓøµÀïÒ¶±ä»»µÄÏà¹ØÐÔÖʼÆËã²¢»æÖÆÐźÅx1(t)µÄ·ù¶ÈƵÆ×ͼ¡£ ¼ÆËã¹ý³Ì£º ÊÖ¹¤»æÖƵÄx1(t) µÄ·ù¶ÈƵÆ×ͼÈçÏ£º ½áºÏËùѧµÄÓйØÂ˲¨µÄ֪ʶ£¬¸ù¾ÝÉÏÃæËùµÃµ½µÄÐźŵÄʱÓòºÍƵÓòͼÐΣ¬Çë´ÓʱÓòºÍƵÓò Á½¸ö·½Ãæ½âÊÍÂ˲¨µÄ¸ÅÄî¡£ ´ð£º Q3-3 ±àд³ÌÐòQ3_3£¬Äܹ»½ÓÊÜ´Ó¼üÅÌÊäÈëµÄϵͳ΢·Ö·½³ÌϵÊýÏòÁ¿£¬²¢·Ö±ð»æÖÆËù¸øÈý ¸öϵͳµÄȺÑÓʱÇúÏßͼ¡£ ³Ð´³ÌÐòQ3_3ÈçÏ£º ϵͳEq.3.1µÄȺÑÓʱÇúÏßͼ ϵͳEq.3.3µÄȺÑÓʱÇúÏßͼ ¸ù¾ÝÉÏÃæµÄȺÑÓʱÇúÏßͼ¿ÉÒÔ¿´³ö£¬¶Ôϵͳ Eq.3.1£¬µ±ÆµÂÊΪ5»¡¶È/Ãëʱ£¬ÈºÑÓʱΪ Ã룬µ±ÆµÂÊΪ10»¡¶È/Ãëʱ£¬ÈºÑÓʱΪ Ã룬ÈçºÎ½âÊÍÕâÁ½¸öȺÑÓʱʱ¼ä£¿ ¸ù¾ÝÉÏÃæµÄȺÑÓʱÇúÏßͼ£¬ËµÃ÷ÕâÁ½¸öϵͳÊÇ·ñ»áÔì³É¶ÔÐźŵÄÏàÎ»Ê§Õæ£¿ÎªÊ²Ã´£¿ ´ÓϵͳEq.3.3µÄȺÑÓʱÇúÏßͼÖпÉÒÔ¿´³ö£¬µ±ÐÅºÅµÄÆµÂÊΪ1»¡¶È/Ãëʱ£¬ÏµÍ³Eq.3.3¶ÔÕâ һƵÂʵÄÐźŵÄÑÓʱÊÇ Ãë¡£ËùÒÔ£¬Ö´ÐгÌÐòQ3_2ʱ£¬µ±×÷ÓÃÓÚϵͳEq.3.3µÄÊäÈëÐźÅΪx(t) = sin(t) + sin(8t)ʱ£¬ÆäÊä³öÐźÅy(t)µÄÊýѧ±í´ïʽΪ£º ËÄ¡¢ÊµÑ鱨¸æÒªÇó 1¡¢°´ÒªÇóÍêÕûÊéдÄãËù±àдµÄÈ«²¿MATLAB³ÌÐò 2¡¢Ïêϸ¼Ç¼ʵÑé¹ý³ÌÖеÄÓйØÐźŲ¨ÐÎͼ£¨´æÓÚ×Ô´øµÄUÅÌÖУ©£¬Í¼ÐÎÒªÓÐÃ÷È·µÄ±êÌ⡣ȫ²¿µÄMATLABͼÐÎÓ¦¸ÃÓôòÓ¡»ú´òÓ¡£¬È»ºóÌùÔÚ±¾ÊµÑ鱨¸æÖеÄÏàӦλÖ㬽ûÖ¹¸´Ó¡¼þ¡£ 3¡¢ÊµÊÂÇóÊǵػشðÏà¹ØÎÊÌ⣬ÑϽû³Ï®¡£ ±¾ÊµÑéÍê³Éʱ¼ä£º Äê Ô ÈÕ ÊµÑéËÄ Í¨ÐÅϵͳ·ÂÕæ Èý¡¢ÊµÑéÄÚÈݼ°²½Öè ʵÑéǰ£¬±ØÐëÊ×ÏÈÔĶÁ±¾ÊµÑéÔÀí£¬Á˽âËù¸øµÄMATLABÏà¹Øº¯Êý£¬¶Á¶®Ëù¸ø³öµÄÈ«²¿ ·¶Àý³ÌÐò¡£ÊµÑ鿪ʼʱ£¬ÏÈÔÚ¼ÆËã»úÉÏÔËÐÐÕâЩ·¶Àý³ÌÐò£¬¹Û²ìËùµÃµ½µÄÐźŵIJ¨ÐÎͼ¡£²¢½áºÏ·¶Àý³ÌÐòËùÍê³ÉµÄ¹¤×÷£¬½øÒ»²½·ÖÎö³ÌÐòÖи÷¸öÓï¾äµÄ×÷Ó㬴ӶøÕæÕýÀí½âÕâЩ³ÌÐòµÄ±à³ÌËã·¨¡£ ʵÑéǰ£¬Ò»¶¨ÒªÕë¶ÔÏÂÃæµÄʵÑéÏîÄ¿×öºÃÏàÓ¦µÄʵÑé×¼±¸¹¤×÷£¬°üÀ¨ÊÂÏȱàдºÃÏàÓ¦µÄʵÑé³ÌÐòµÈÊÂÏî¡£ Q4-1 ¸ø·¶Àý³ÌÐòProgram4_1¼Ó×¢ÊÍ¡£ Q4-2 ·¶Àý³ÌÐòProgram4_1ÖеÄÁ¬ÐøÊ±¼äÐźÅx(t) ÊÇʲôÐźţ¿ËüµÄÊýѧ±í´ïʽΪ£º Q4-3 ÔÚ1/2¡ª1/10Ö®¼äÑ¡ÔñÈô¸É¸ö²»Í¬TsÖµ£¬·´¸´Ö´ÐÐÖ´Ðз¶Àý³ÌÐòProgram4_1£¬±£ ´æÖ´ÐгÌÐòËùµÃµ½µÄͼÐΡ£ Ts = 1/2ʱµÄÐźÅʱÓò²¨ÐÎºÍÆµÆ×ͼ Ts = 1/4ʱµÄÐźÅʱÓò²¨ÐÎºÍÆµÆ×ͼ Ts = 1/8ʱµÄÐźÅʱÓò²¨ÐÎºÍÆµÆ×ͼ ¸ù¾ÝÉÏÃæµÄÈý·ùͼÐΣ¬×÷Ò»¸ö¹ØÓÚ³éÑùƵÂÊÊÇÔõÑùÓ°ÏìÒѳéÑùÐÅºÅÆµÆ×µÄС½á¡£ ´ð£º ³ÌÐòProgram4_1ÖеÄÁ¬ÐøÐźÅÊÇ·ñÊÇ´øÏÞÐźţ¿Èç¹û²»ÊÇ´øÏÞÐźţ¬ÊÇ·ñ¿ÉÒÔÑ¡ÔñÒ»¸ö³é ÑùƵÂÊÄܹ»ÍêÈ«Ïû³ýÒѳéÑùÐźÅÖÐµÄÆµÆ×µÄ»ìµþ£¿Èç¹û²»ÊÇ´øÏÞÐźţ¬ÄÇô£¬Õâ¸öÁ¬ÐøÊ±¼äÐźÅÔÚ³éÑùǰ±ØÐëÂ˲¨£¬ÇëÄãÑ¡ÔñÒ»¸ö½ÏΪºÏÊÊµÄÆµÂÊ×÷Ϊ·À»ìµþÂ˲¨Æ÷µÄ½ØÖ¹ÆµÂÊ£¬ÄãÑ¡ ÔñµÄÕâ¸ö½ØÖ¹ÆµÂÊÊǶàÉÙ£¿ËµÃ÷ÄãµÄÀíÓÉ¡£ ´ð£º Q4-4 ÇëÊÖ¹¤¼ÆËãÉýÓàÏÒÐźÅx(t) = [1+cos(pi*t)].*[u(t+1)-u(t-1)] µÄ¸µÀïÒ¶±ä»»µÄÊýѧ±í´ï ʽ£¬ÊÖ¹¤»æÖÆÆä·ù¶ÈƵÆ×ͼ¡£ ¼ÆËã¹ý³Ì£º ÊÖ¹¤»æÖƵÄÉýÓàÏÒÐźÅx(t) = [1+cos(pi*t)].*[u(t+1)-u(t-1)] µÄ·ù¶ÈƵÆ×ͼ ´ÓÉÏͼµÄ·ù¶ÈƵÆ×ÉÏ¿´£¬ÉýÓàÏÒÐźÅÊÇ·ñÊÇ´øÏÞÐźţ¿ÄÜ·ñ½üËÆ½«Ëü¿´×÷ÊÇÒ»¸ö´øÏÞÐÅ ºÅ£¿Èç¹û¿ÉÒÔ£¬ÄÇô£¬¹À¼ÆÐźŵÄ×î¸ßƵÂÊ´óÔ¼ÊǶàÉÙ£¿ ´ð£º Q4-5 ÔĶÁ·¶Àý³ÌÐòProgram4_2£¬ÔÚÕâ¸ö³ÌÐòÖУ¬Ñ¡ÔñµÄÐźŵÄ×î¸ßƵÂÊÊǶàÉÙ£¿Õâ¸öƵ ÂÊÑ¡ÔñµÃÊÇ·ñÇ¡µ±£¿ÎªÊ²Ã´£¿ ´ð£º Q4-6 ÔÚ1¡ª8Ö®¼äÑ¡Ôñ³éÑùƵÂÊÓëÐźÅ×î¸ßƵÂÊÖ®±È£¬¼´³ÌÐòProgram4_2ÖеÄaÖµ£¬·´ ¸´Ö´Ðз¶Àý³ÌÐòProgram4_2£¬¹Û²ìÖØ½¨ÐźÅÓëÔÐźÅÖ®¼äµÄÎó²î£¬Í¨¹ý¶ÔÎó²îµÄ·ÖÎö£¬ËµÃ÷¶ÔÓÚ´øÏÞÐźŶøÑÔ£¬³éÑùƵÂÊÔ½¸ß£¬ÔòƵÆ×»ìµþÊÇ·ñԽС£¿ ´ð£º Q4-7 ͼQ4-7ÊÇÒ»¸öRLC´®Áªµç·£¬ÔÚÓÐЩ³¡ºÏ£¬¿ÉÒÔ°ÑËüÓÃÀ´×÷Ϊһ¸öÂ˲¨Æ÷ʹÓ㬠Èç¹ûÑ¡Ôñ²»Í¬µÄλÖõÄÐźÅ×÷ΪÊä³öÐźţ¬¸Ãµç·¾ßÓв»Í¬µÄÂ˲¨ÌØÐÔ¡£¸Ãµç·µÄÊä³öÐźŷֱðΪy1(t)¡¢y2(t)ºÍy3(t)ʱ£¬µç·µÄÊäÈëÊä³ö΢·Ö·½³ÌºÍƵÂÊÏìÓ¦µÄÊýѧ±í´ïʽ·Ö±ðÐÎÈ磺 ???Ñ¡Ôñy1(t)ΪÊä³öÐźÅʱ£¨¿É½«µç·¿´³Éϵͳ1£© d2y1(t)dy1(t)22?2????ny1(t)??nx(t) ΢·Ö·½³ÌΪ n2dtdtR y3(t)???ƵÂÊÏìӦΪ H(j?)? 2(j?)2?2??n(j?)??n2nx(t)L y2(t)??Ñ¡Ôñy2(t)ΪÊä³öÐźÅʱ£¨¿É½«µç·¿´³Éϵͳ2£© d2y2(t)dy2(t)d2x(t)2?2??n??ny2(t)?΢·Ö·½³ÌΪ 22dtdtdt?C y1(t)??ͼQ4-7 RLC´®Áªµç· (j?)2ƵÂÊÏìӦΪ H(j?)? 22(j?)?2??n(j?)??nÑ¡Ôñy3(t)ΪÊä³öÐźÅʱ£¨¿É½«µç·¿´³Éϵͳ3£© d2y3(t)dy3(t)dx(t)2?2????y(t)?2??΢·Ö·½³ÌΪ nn3ndtdtdt2ƵÂÊÏìӦΪ H(j?)?2??n(j?) 2(j?)2?2??n(j?)??nÇëд³öÉÏÃæµÄ΢·Ö·½³ÌºÍƵÂÊÏìÓ¦±í´ïʽÖеIJÎÊý?¡¢?nÓëR¡¢L¡¢CÖ®¼äµÄÊýѧ¹ØÏµ¡£ Q4-8 ±àд³ÌÐòQ4_8£¬Äܹ»½ÓÊÜ´Ó¼üÅÌÊäÈëµÄ?¡¢?nÖ®Öµ£¬¼ÆËã²¢ÔÚͬһ¸öͼÐδ°¿ÚµÄÈý ¸ö×ÓͼÖлæÖƳöÕâÈý¸öƵÂÊÏìÓ¦ÌØÐÔÇúÏߣ¬ÒªÇóÿ¸ö×ÓͼÓбêÌ⣬»æÖÆµÄÆµÂÊ·¶Î§Îª0¡ª40»¡¶È/Ã롣ͼÐβ¼ÖÃÈçͼQ4-8Ëùʾ¡£ ͼQ4-8 ͼÐβ¼Öã¨zeta = ?£¬ wn = ?n£© ³Ð´³ÌÐòQ4_8ÈçÏ£º Ö´ÐгÌÐòQ4_8£¬ÊäÈëzeta = 0.7£¬wn = 15£¬ÔÚͼÐÎÖеĿհ״¦£¬±êÉÏzeta ºÍwnÖ®Öµ£¬ ÈçͼQ4-8Ëùʾ¡£±£´æËùµÃµ½µÄͼÐÎÈçÏ¡£ zeta = 0.7£¬wn = 15ʱµÄƵÂÊÏìÓ¦ÇúÏßͼ ¸ù¾ÝÉÏÃæµÄͼÐΣ¬Çë˵Ã÷ϵͳ1¡¢ÏµÍ³2ºÍϵͳ3·Ö±ð¾ßÓкÎÖÖÂ˲¨ÌØÐÔ£¿ ´ð£º ¹Ì¶¨zeta = 0.7£¬ÔÚ2¡ª30Ö®¼äÑ¡Ôñ²»Í¬µÄwnÖµ£¬·´¸´Ö´ÐгÌÐòQ4_8£¬±£´æzeta = 0.7£¬ wn = 5ºÍzeta = 0.7£¬wn = 20ËùµÃµ½µÄÁ½·ùͼÐΡ£¸ù¾ÝÖ´ÐгÌÐòËùµÃµ½µÄϵͳƵÂÊÏìÓ¦µÄÐÎ×´£¬ËµÃ÷wnµÄ²»Í¬È¡Öµ·Ö±ð¶Ôϵͳ1¡¢ÏµÍ³2ºÍϵͳ3µÄÂ˲¨ÌØÐÔ£¨´ÓͨƵ´øµÄ´ø¿í¡¢¹ý¶É´ø¿íºÍ½ØÖ¹ÆµÂʵȷ½Ãæ×÷˵Ã÷£©µÄÓ°Ïì¡£ zeta = 0.7£¬wn = 5ʱµÄƵÂÊÏìÓ¦ÇúÏßͼ zeta = 0.7£¬wn = 20ʱµÄƵÂÊÏìÓ¦ÇúÏßͼ ´ð£º ¹Ì¶¨wn = 15£¬ÔÚ0.2¡ª1Ö®¼äÑ¡Ôñ²»Í¬µÄzetaÖµ£¬·´¸´Ö´ÐгÌÐòQ4_8£¬±£´æzeta = 0.4£¬ wn = 15ºÍzeta = 0.8£¬wn = 15ËùµÃµ½µÄÁ½·ùͼÐΡ£¸ù¾ÝÖ´ÐгÌÐòËùµÃµ½µÄϵͳƵÂÊÏìÓ¦µÄÐÎ×´£¬ËµÃ÷zetaµÄ²»Í¬È¡Öµ·Ö±ð¶Ôϵͳ1¡¢ÏµÍ³2ºÍϵͳ3µÄÂ˲¨ÌØÐÔµÄÓ°Ïì¡£ zeta = 0.4£¬wn = 15ʱµÄƵÂÊÏìÓ¦ÇúÏßͼ zeta = 0.8£¬wn = 15ʱµÄƵÂÊÏìÓ¦ÇúÏßͼ ´ð£º Q4-9 µ÷ÖÆÓë½âµ÷·ÂÕæÊµÑé¡£Éèµ÷ÖÆÐźÅΪµ¥ÆµÕýÏÒÐźÅx(t) = sin(t)£¬Æä½ÇƵÂÊΪ1 rad/s£¬ ÔØ²¨Îªc(t) = cos(10t)£¬ÔØÆµÎª10rad/s¡£ Çë°´ÏÂÃæµÄͼQ4-9½¨Á¢·ÂտģÐÍͼ£º ͼÖй²ÓÐÈý¸öÐźÅÔ´£¬ÆäÖУº Sin WaveΪµ÷ÖÆÐźÅÔ´¼´µ÷ÖÆÐźţ¬¿ÉÉ趨ÆäƵÂÊΪ1 rad/s £» Sin Wave1ÎªÔØ²¨Ðźţ¬¿ÉÉ趨ÆäƵÂÊΪ30rad/s£¬Band-Limited White NoiseΪ´øÏÞ°×ÔëÉù¸ÉÈÅÐźţ¬ÆäƵÂÊ¿ÉÈÏΪԶ´óÓÚ1 rad/s£» ProductºÍProduct1·Ö±ðΪµ÷ÖÆÆ÷ºÍ½âµ÷Æ÷£¬Íê³ÉÐźŵij˷¨ÔËËã¡£ ͼQ4-9 Ðźŵĵ÷ÖÆÓë½âµ÷·ÂտģÐÍͼ µÚÒ»¸ö³Ë·¨Æ÷Ö®ºóµÄTransfer FunÊÇÒ»¸ö´øÍ¨Â˲¨Æ÷£¬ÊýѧģÐͿɸø¶¨Îª£º H(j?)?2??n(j?) 22(j?)?2??n(j?)??n¿ÉÒÔÓÃQ4-7µÄRLC´®Áªµç·¹¹³ÉµÄϵͳ3ʵÏÖ¡£ ¸ù¾Ýµ÷ÖÆÐźźÍÔØ²¨µÄƵÂÊ£¬ÒÔ¼°ÊµÑé½á¹û£¬ÄãÈÏΪͼQ4-9ÖеĴøÍ¨Â˲¨Æ÷µÄ²ÎÊý ? ºÍ n ? Ó¦¸ÃÑ¡ÔñΪ£º wn = ? = µÚ¶þ¸ö³Ë·¨Æ÷Ö®ºóµÄTransfer FunÊÇÒ»¸öµÍͨÂ˲¨Æ÷£¬É趨Æäϵͳº¯ÊýΪ£º 2?n H(j?)?22(j?)?2??n(j?)??n¿ÉÒÔÓÃQ4-7µÄRLC´®Áªµç·¹¹³ÉµÄϵͳ1ʵÏÖ¡£ ¸ù¾Ýµ÷ÖÆÐźźÍÔØ²¨µÄƵÂÊ£¬ÒÔ¼°ÊµÑé½á¹û£¬ÄãÈÏΪͼQ4-9ÖеĵÍͨÂ˲¨Æ÷µÄ²ÎÊý ? ºÍ n ? Ó¦¸ÃÑ¡ÔñΪ£º wn = ? = ËÄ¡¢ÊµÑ鱨¸æÒªÇó 1¡¢°´ÒªÇóÍêÕûÊéдÄãËù±àдµÄÈ«²¿MATLAB³ÌÐò 2¡¢Ïêϸ¼Ç¼ʵÑé¹ý³ÌÖеÄÓйØÐźŲ¨ÐÎͼ£¨´æÓÚ×Ô´øµÄUÅÌÖУ©£¬Í¼ÐÎÒªÓÐÃ÷È·µÄ±êÌ⡣ȫ²¿µÄMATLABͼÐÎÓ¦¸ÃÓôòÓ¡»ú´òÓ¡£¬È»ºóÌùÔÚ±¾ÊµÑ鱨¸æÖеÄÏàӦλÖ㬽ûÖ¹¸´Ó¡