ʵÑéÒ» MATLABÔËËã»ù´¡
1. ÏÈÇóÏÂÁбí´ïʽµÄÖµ£¬È»ºóÏÔʾMATLAB¹¤×÷¿Õ¼äµÄʹÓÃÇé¿ö²¢±£´æÈ«²¿±äÁ¿¡£
2sin850(1) z1?
1?e2(2) z2?ln(x?1?x2)£¬ÆäÖÐx??121?2i??2 ?5???0.45e0.3a?e?0.3a0.3?asin(a?0.3)?ln,a??3.0,?2.9,?,2.9,3.0 (3) z3?22?t20?t?1?1?t?2£¬ÆäÖÐt=0:0.5:2.5 (4) z4??t2?1?t2?2t?12?t?3?½â£º MÎļþ: z1=2*sin(85*pi/180)/(1+exp(2)) x=[2 1+2*i;-.45 5]; z2=1/2*log(x+sqrt(1+x^2)) a=-3.0:0.1:3.0; z3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2) t=0:0.5:2.5; z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1)
ÔËËã½á¹û£º z1=2*sin(85*pi/180)/(1+exp(2)) x=[2 1+2*i;-.45 5]; z2=1/2*log(x+sqrt(1+x^2)) a=-3.0:0.1:3.0; z3=(exp(0.3.*a)-exp(-0.3.*a))./2.*sin(a+0.3)+log((0.3+a)./2) t=0:0.5:2.5; z4=(t>=0&t<1).*(t.^2)+(t>=1&t<2).*(t.^2-1)+(t>=2&t<3) .*(t.^2-2*t+1) z1 = 0.2375 z2 = 0.7114 - 0.0253i 0.8968 + 0.3658i 0.2139 + 0.9343i 1.1541 - 0.0044i z3 = Columns 1 through 4 0.7388 + 3.1416i 0.7696 + 3.1416i 0.7871 + 3.1416i 0.7913 + 3.1416i Columns 5 through 8 0.7822 + 3.1416i 0.7602 + 3.1416i 0.7254 + 3.1416i 0.6784 + 3.1416i Columns 9 through 12 0.6196 + 3.1416i 0.5496 + 3.1416i 0.4688 + 3.1416i 0.3780 + 3.1416i Columns 13 through 16 0.2775 + 3.1416i 0.1680 + 3.1416i 0.0497 + 3.1416i -0.0771 + 3.1416i Columns 17 through 20 -0.2124 + 3.1416i -0.3566 + 3.1416i -0.5104 + 3.1416i -0.6752 + 3.1416i Columns 21 through 24 -0.8536 + 3.1416i -1.0497 + 3.1416i -1.2701 + 3.1416i -1.5271 + 3.1416i Columns 25 through 28 -1.8436 + 3.1416i -2.2727 + 3.1416i -2.9837 + 3.1416i -37.0245 Columns 29 through 32 -3.0017 -2.3085 -1.8971 -1.5978 Columns 33 through 36 -1.3575 -1.1531 -0.9723 -0.8083 Columns 37 through 40 -0.6567 -0.5151 -0.3819 -0.2561 Columns 41 through 44 -0.1374 -0.0255 0.0792 0.1766 Columns 45 through 48 0.2663 0.3478 0.4206 0.4841 Columns 49 through 52 0.5379 0.5815 0.6145 0.6366 Columns 53 through 56 0.6474 0.6470 0.6351 0.6119 Columns 57 through 60 0.5777 0.5327 0.4774 0.4126 Column 61 0.3388 z4 = 0 0.2500 0 1.2500 1.0000 2.2500 2. ÒÑÖª£º
?1234?4??13?1??,B??203? A??34787???????3657???3?27??ÇóÏÂÁбí´ïʽµÄÖµ£º
(1) A+6*BºÍA-B+I£¨ÆäÖÐIΪµ¥Î»¾ØÕó£© (2) A*BºÍA.*B (3) A^3ºÍA.^3 (4) A/B¼°B\\A
(5) [A,B]ºÍ[A([1,3],:);B^2] ½â£º
M Îļþ£º A=[12 34 -4;34 7 87;3 65 7];B=[1 3 -1;2 0 3;3 -2 7]; A+6.*B A-B+eye(3) A*B A.*B A^3 A.^3 A/B B\\A [A,B] [A([1,3],:);B^2] ÔËËã½á¹û£º
A=[12 34 -4;34 7 87;3 65 7];B=[1 3 -1;2 0 3;3 -2 7]; A+6.*B A-B+eye(3) A*B A.*B A^3 A.^3 A/B B\\A [A,B] [A([1,3],:);B^2] ans = 18 52 -10 46 7 105 21 53 49 ans = 12 31 -3 32 8 84 0 67 1 ans = 68 44 62 309 -72 596 154 -5 241 ans = 12 102 4 68 0 261 9 -130 49 ans = 37226 233824 48604 247370 149188 600766 78688 454142 118820 ans = 1728 39304 -64 39304 343 658503 27 274625 343 ans = 16.4000 -13.6000 7.6000 35.8000 -76.2000 50.2000 67.0000 -134.0000 68.0000 ans = 109.4000 -131.2000 322.8000 -53.0000 85.0000 -171.0000 -61.6000 89.8000 -186.2000 ans = 12 34 -4 1 3 -1 34 7 87 2 0 3 3 65 7 3 -2 7 ans = 12 34 -4 3 65 7 4 5 1 11 0 19 20 -5 40 3. ÉèÓоØÕóAºÍB
?1?6?A??11??16??215??3?1778910???12131415?,B??0??17181920??9?22232425???423416??69??23?4?
?70?1311??0(1) ÇóËüÃǵij˻ýC¡£
(2) ½«¾ØÕóCµÄÓÒϽÇ3¡Á2×Ó¾ØÕ󸳸øD¡£ (3) ²é¿´MATLAB¹¤×÷¿Õ¼äµÄʹÓÃÇé¿ö¡£ ½â£º. ÔËËã½á¹û£º
E=(reshape(1:1:25,5,5))';F=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 13 11]; C= E*F H=C(3:5,2:3) C = 93 150 77 258 335 237 423 520 397 588 705 557 753 890 717 H = 520 397 705 557 890 717 4. Íê³ÉÏÂÁвÙ×÷£º
(1) Çó[100,999]Ö®¼äÄܱ»21Õû³ýµÄÊýµÄ¸öÊý¡£ (2) ½¨Á¢Ò»¸ö×Ö·û´®ÏòÁ¿£¬É¾³ýÆäÖеĴóд×Öĸ¡£ ½â£º(1) ½á¹û£º
m=100:999; n=find(mod(m,21)==0); length(n) ans = 43 (2). ½¨Á¢Ò»¸ö×Ö·û´®ÏòÁ¿ ÀýÈ磺 ch='ABC123d4e56Fg9';ÔòÒªÇó½á¹ûÊÇ£º
ch='ABC123d4e56Fg9'; k=find(ch>='A'&ch<='Z'); ch(k)=[] ch = 123d4e56g9
ʵÑé¶þ MATLAB¾ØÕó·ÖÎöÓë´¦Àí
?E3?31. ÉèÓзֿé¾ØÕóA???O2?3R3?2?£¬ÆäÖÐE¡¢R¡¢O¡¢S·Ö±ðΪµ¥Î»¾ØÕó¡¢Ëæ»ú¾ØÕó¡¢Áã¾ØS2?2???ER?RS?¡£ ?2S??OÕóºÍ¶Ô½ÇÕó£¬ÊÔͨ¹ýÊýÖµ¼ÆËãÑéÖ¤A2??½â: MÎļþÈçÏ£»
Êä³ö½á¹û£º
S = 1 0 0 2 A = 1.0000 0 0 0.5383 0.4427 0 1.0000 0 0.9961 0.1067 0 0 1.0000 0.0782 0.9619 0 0 0 1.0000 0 0 0 0 0 2.0000 a = 1.0000 0 0 1.0767 1.3280 0 1.0000 0 1.9923 0.3200 0 0 1.0000 0.1564 2.8857 0 0 0 1.0000 0 0 0 0 0 4.0000 ans = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ?ER?RS?ÓÉans,ËùÒÔA2??? 2OS??2. ²úÉú5½×Ï£¶û²®ÌؾØÕóHºÍ5½×ÅÁ˹¿¨¾ØÕóP£¬ÇÒÇóÆäÐÐÁÐʽµÄÖµHhºÍHpÒÔ¼°ËüÃÇ
µÄÌõ¼þÊýThºÍTp£¬ÅжÏÄĸö¾ØÕóÐÔÄܸüºÃ¡£ÎªÊ²Ã´£¿ ½â£ºMÎļþÈçÏ£º
Êä³ö½á¹û£º H = 1.0000 0.5000 0.3333 0.2500 0.2000 0.5000 0.3333 0.2500 0.2000 0.1667 0.3333 0.2500 0.2000 0.1667 0.1429 0.2500 0.2000 0.1667 0.1429 0.1250 0.2000 0.1667 0.1429 0.1250 0.1111 P = 1 1 1 1 1 1 2 3 4 5 1 3 6 10 15 1 4 10 20 35 1 5 15 35 70 Hh = 3.7493e-012 Hp = 1 Th = 4.7661e+005 Tp = 8.5175e+003 ÒòΪËüÃǵÄÌõ¼þÊýTh>>Tp,ËùÒÔpascal¾ØÕóÐÔÄܸüºÃ¡£ 3. ½¨Á¢Ò»¸ö5¡Á5¾ØÕó£¬ÇóËüµÄÐÐÁÐʽֵ¡¢¼£¡¢ÖȺͷ¶Êý¡£
½â£º MÎļþÈçÏ£º
Êä³ö½á¹ûΪ£º
A = 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 d = 5070000 t = 65 c1 = 6.8500 c2 = 5.4618 cinf = 6.8500
4. ÒÑÖª
??29618??
A??20512?????885??ÇóAµÄÌØÕ÷Öµ¼°ÌØÕ÷ÏòÁ¿£¬²¢·ÖÎöÆäÊýѧÒâÒå¡£
½â£º
MÎļþÈçͼ£º
Êä³ö½á¹ûΪ£º
V = 0.7130 0.2803 0.2733 -0.6084 -0.7867 0.8725 0.3487 0.5501 0.4050 D = -25.3169 0 0 0 -10.5182 0 0 0 16.8351 ÊýѧÒâÒ壺VµÄ3¸öÁÐÏòÁ¿ÊÇAµÄÌØÕ÷ÏòÁ¿£¬DµÄÖ÷¶Ô½ÇÏßÉÏ3¸öÊÇAµÄÌØÕ÷Öµ£¬ÌرðµÄ£¬VµÄ3¸öÁÐÏòÁ¿·Ö±ðÊÇDµÄ3¸öÌØÕ÷ÖµµÄÌØÕ÷ÏòÁ¿¡£ 5. ÏÂÃæÊÇÒ»¸öÏßÐÔ·½³Ì×飺
?1?2??1?3??1??4(1) Ç󷽳̵Ľ⡣
1314151?4??x??0.95??11?????
x?0.672?5??????x??0.52??1??3??6??(2) ½«·½³ÌÓÒ±ßÏòÁ¿ÔªËØb3¸ÄΪ0.53ÔÙÇó½â£¬²¢±È½Ïb3µÄ±ä»¯ºÍ½âµÄÏà¶Ô±ä»¯¡£ (3) ¼ÆËãϵÊý¾ØÕóAµÄÌõ¼þÊý²¢·ÖÎö½áÂÛ¡£ ½â£º MÎļþÈçÏ£º
Êä³ö½á¹û£º X = 1.2000 0.6000 0.6000 X2 = 1.2000 0.6000 0.6000 C = 1.3533e+003 Óɽá¹û£¬XºÍX2µÄÖµÒ»Ñù£¬Õâ±íʾbµÄ΢С±ä»¯¶Ô·½³Ì½âÒ²Ó°Ïì½ÏС£¬¶øAµÄÌõ¼þÊýËãµÃ½ÏС£¬ËùÒÔÊýÖµÎȶ¨ÐԽϺã¬AÊǽϺõľØÕó¡£
6. ½¨Á¢A¾ØÕó£¬ÊԱȽÏsqrtm(A)ºÍsqrt(A)£¬·ÖÎöËüÃǵÄÇø±ð¡£ ½â£ºMÎļþÈçÏ£º
ÔËÐнá¹ûÓУº A = 16 6 18 20 5 12 9 8 5 b1 = 3.8891 -0.1102 3.2103 3.2917 2.1436 0.3698 0.3855 2.0760 1.7305 b2 = 4.0000 2.4495 4.2426 4.4721 2.2361 3.4641 3.0000 2.8284 2.2361 b = 16.0000 6.0000 18.0000 20.0000 5.0000 12.0000 9.0000 8.0000 5.0000
·ÖÎö½á¹ûÖª£ºsqrtm(A)ÊÇÀàËÆAµÄÊýֵƽ·½¸ù£¨Õâ¿ÉÓÉb1*b1=AµÄ½á¹û¿´³ö£©£¬¶øsqrt(A)ÔòÊǶÔAÖеÄÿ¸öÔªËØ¿ª¸ùºÅ£¬Á½ÔòÇø±ð¾ÍÔÚÓÚ´Ë¡£
ʵÑéÈý Ñ¡Ôñ½á¹¹³ÌÐòÉè¼Æ
Ò»¡¢ÊµÑéÄ¿µÄ
1. ÕÆÎÕ½¨Á¢ºÍÖ´ÐÐMÎļþµÄ·½·¨¡£
2. ÕÆÎÕÀûÓÃifÓï¾äʵÏÖÑ¡Ôñ½á¹¹µÄ·½·¨¡£
3. ÕÆÎÕÀûÓÃswitchÓï¾äʵÏÖ¶à·Ö֧ѡÔñ½á¹¹µÄ·½·¨¡£ 4. ÕÆÎÕtryÓï¾äµÄʹÓᣠ¶þ¡¢ÊµÑéÄÚÈÝ
1. Çó·Ö¶Îº¯ÊýµÄÖµ¡£
?x2?x?6x?0ÇÒx??3?y??x2?5x?60?x?5ÇÒx?2¼°x?3
?x2?x?1ÆäËû?ÓÃifÓï¾äʵÏÖ£¬·Ö±ðÊä³öx=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0ʱµÄyÖµ¡£ ½â£ºMÎļþÈçÏ£º
ÔËËã½á¹ûÓУº
f(-5) y = 14 >> f(-3) y = 11 >> f(1) y = 2 >> f(2) y = 1 >> f(2.5) y = -0.2500 >> f(3) y = 5 >> f(5) y = 19
2. ÊäÈëÒ»¸ö°Ù·ÖÖƳɼ¨£¬ÒªÇóÊä³ö³É¼¨µÈ¼¶A¡¢B¡¢C¡¢D¡¢E¡£ÆäÖÐ90·Ö~100·ÖΪA£¬
80·Ö~89·ÖΪB£¬79·Ö~79·ÖΪC£¬60·Ö~69·ÖΪD£¬60·ÖÒÔÏÂΪE¡£
ÒªÇó£º
(1) ·Ö±ðÓÃifÓï¾äºÍswitchÓï¾äʵÏÖ¡£
(2) ÊäÈë°Ù·ÖÖƳɼ¨ºóÒªÅжϸóɼ¨µÄºÏÀíÐÔ£¬¶Ô²»ºÏÀíµÄ³É¼¨Ó¦Êä³ö³ö´íÐÅÏ¢¡£ ½â£ºMÎļþÈçÏÂ
ÊÔËã½á¹û£º score=88 grade = B score=123 ´íÎó£ºÊäÈëµÄ³É¼¨²»ÊÇ°Ù·ÖÖƳɼ¨ 3. ¹è¹È¹«Ë¾Ô±¹¤µÄ¹¤×ʼÆËã·½·¨ÈçÏ£º
(1) ¹¤×÷ʱÊý³¬¹ý120СʱÕߣ¬³¬¹ý²¿·Ö¼Ó·¢15%¡£ (2) ¹¤×÷ʱÊýµÍÓÚ60СʱÕߣ¬¿Û·¢700Ôª¡£ (3) ÆäÓఴÿСʱ84Ôª¼Æ·¢¡£
ÊÔ±à³Ì°´ÊäÈëµÄ¹¤ºÅºÍ¸ÃºÅÔ±¹¤µÄ¹¤Ê±Êý£¬¼ÆËãÓ¦·¢¹¤×Ê¡£ ½â£ºMÎļþÏÂ
4. Éè¼Æ³ÌÐò£¬Íê³ÉÁ½Î»ÊýµÄ¼Ó¡¢¼õ¡¢³Ë¡¢³ýËÄÔòÔËË㣬¼´²úÉúÁ½¸öÁ½Î»Ëæ»úÕûÊý£¬ÔÙÊäÈëÒ»¸öÔËËã·ûºÅ£¬×öÏàÓ¦µÄÔËË㣬²¢ÏÔʾÏàÓ¦µÄ½á¹û¡£ ½â£º
MÎļþÈçÏ£»
ÔËËã½á¹ûÀý£º a = 38 b = 33 ÊäÈëÒ»¸öÔËËã·û:^ c = false a = 92 b = 40 ÊäÈëÒ»¸öÔËËã·û:+ c = 132 5. ½¨Á¢5¡Á6¾ØÕó£¬ÒªÇóÊä³ö¾ØÕóµÚnÐÐÔªËØ¡£µ±nÖµ³¬¹ý¾ØÕóµÄÐÐÊýʱ£¬×Ô¶¯×ªÎªÊä³ö¾ØÕó×îºóÒ»ÐÐÔªËØ£¬²¢¸ø³ö³ö´íÐÅÏ¢¡£ ½â£º
MÎļþÈçÏ£º
ÔËËã½á¹ûÈçÏ£º
ÊäÈëÒ»¸ö5ÐÐ6ÁоØÕóA=[1 2 3 4 5 5;2 3 4 5 7 6;2 2 2 2 2 3;11 2 3 9 7 3;2 3 4 5 6 7] ÊäÈëÒ»ÕýÕûÊýn=4 11 2 3 9 7 3 ÊäÈëÒ»¸ö5ÐÐ6ÁоØÕóA=[1 2 3 4 5 5;2 3 4 5 7 6;2 2 2 2 2 3;11 2 3 9 7 3;2 3 4 5 6 7] ÊäÈëÒ»ÕýÕûÊýn=6 2 3 4 5 6 7 ans = Error using ==> disp Too many input arguments.
ʵÑéËÄ Ñ»·½á¹¹³ÌÐòÉè¼Æ
Ò»¡¢ÊµÑéÄ¿µÄ
1. ÕÆÎÕÀûÓÃforÓï¾äʵÏÖÑ»·½á¹¹µÄ·½·¨¡£ 2. ÕÆÎÕÀûÓÃwhileÓï¾äʵÏÖÑ»·½á¹¹µÄ·½·¨¡£ 3. ÊìϤÀûÓÃÏòÁ¿ÔËËãÀ´´úÌæÑ»·²Ù×÷µÄ·½·¨¡£ ¶þ¡¢ÊµÑéÄÚÈÝ
1. ¸ù¾Ý
?26?1111?????£¬Çó¦ÐµÄ½üËÆÖµ¡£µ±n·Ö±ðÈ¡100¡¢1000¡¢100002222123nʱ£¬½á¹ûÊǶàÉÙ£¿
ÒªÇ󣺷ֱðÓÃÑ»·½á¹¹ºÍÏòÁ¿ÔËË㣨ʹÓÃsumº¯Êý£©À´ÊµÏÖ¡£ ½â£ºMÎļþÈçÏ£º
ÔËÐнá¹ûÈçÏ£º
K>> %Ñ»·½á¹¹¼ÆËãpiÖµ y=0; n=input('n='); for i=1:n y=y+1/i/i; end pi=sqrt(6*y) n=100 pi = 3.1321 n=1000 pi = 3.1406 n=10000 pi = 3.1415 %ÏòÁ¿·½·¨¼ÆËãPiÖµ n=input('n='); i=1./(1:n).^2; s=sum(i); pi=sqrt(6*s) n=100 pi = 3.1321 n=1000 pi = 3.1406 n=10000 pi =3.1415 2. ¸ù¾Ýy?1?111????£¬Çó£º 352n?1(1) y<3ʱµÄ×î´ónÖµ¡£
(2) Óë(1)µÄnÖµ¶ÔÓ¦µÄyÖµ¡£ ½â£ºM¡ªÎļþÈçÏ£º
ÔËÐнá¹ûÈçÏ£º K>> y=0;n=0; while y<3 n=n+1; y=y+1/(2*n-1); end y n if y>3 n=n-1; end n y = 3.0033 n = 57 n = 56 3. ¿¼ÂÇÒÔϵü´ú¹«Ê½£º
xn?1?a b?xnÆäÖÐa¡¢bΪÕýµÄѧÊý¡£
(1) ±àд³ÌÐòÇóµü´úµÄ½á¹û£¬µü´úµÄÖÕÖ¹Ìõ¼þΪ|xn+1-xn|¡Ü10-5£¬µü´ú³õÖµx0=1.0£¬µü´ú´ÎÊý²»³¬¹ý500´Î¡£
?b?b2?4a(2) Èç¹ûµü´ú¹ý³ÌÊÕÁ²ÓÚr£¬ÄÇôrµÄ׼ȷֵÊÇ£¬µ±(a,b)µÄֵȡ(1,1)¡¢
2(8,3)¡¢(10,0.1)ʱ£¬·Ö±ð¶Ôµü´ú½á¹ûºÍ׼ȷֵ½øÐбȽϡ£
½â£º
MÎļþÈçÏ£º
ÔËËã½á¹ûÈçÏ£» ÇëÊäÈëÕýÊýa=1 ÇëÊäÈëÕýÊýb=1 x = 0.6180 r = 0.6180 -4.7016 r = 0.6180 -1.6180 s = -0.0000 -2.2361 ÇëÊäÈëÕýÊýa=8 ÇëÊäÈëÕýÊýb=3 x = 1.7016 r = 1.7016 -1.6180 r = 1.7016 -4.7016 s = 0.0 -6.4031 ÇëÊäÈëÕýÊýa=10 ÇëÊäÈëÕýÊýb=0.1 x = 3.1127 r = 3.1127 -4.7016 r = 3.1127 -3.2127 s = -0.0000 -6.3254 4. ÒÑÖª
?f1?1?f?0?2??f3?1??fn?fn?1?2fn?2?fn?3Çóf1~f100ÖУº
(1) ×î´óÖµ¡¢×îСֵ¡¢¸÷ÊýÖ®ºÍ¡£ (2) ÕýÊý¡¢Áã¡¢¸ºÊýµÄ¸öÊý¡£
n?1n?2n?3n?3
½â£ºM¡ªÎļþ
ÒÔÏÂÊÇÔËËã½á¹û£º max(f)=437763282635 min(f)=-899412113528 sum(f)=-742745601951 c1=49 c2=2 c3=49
5. ÈôÁ½¸öÁ¬Ðø×ÔÈ»ÊýµÄ³Ë»ý¼õ1ÊÇËØÊý£¬Ôò³ÆÕâÁ½¸ö±ß½®×ÔÈ»ÊýÊÇÇ×ÃÜÊý¶Ô£¬¸ÃËØÊýÊÇÇ×ÃÜËØÊý¡£ÀýÈ磬2¡Á3-1=5£¬ÓÉÓÚ5ÊÇËØÊý£¬ËùÒÔ2ºÍ3ÊÇÇ×ÃÜÊý£¬5ÊÇÇ×ÃÜËØÊý¡£Çó[2,50]Çø¼äÄÚ£º
(1) Ç×ÃÜÊý¶ÔµÄ¶ÔÊý¡£
(2) ÓëÉÏÊöÇ×ÃÜÊý¶Ô¶ÔÓ¦µÄËùÓÐÇ×ÃÜËØÊýÖ®ºÍ¡£
½â£º
MÎļþ£º
ÔËËã½á¹ûΪ£º j =
29 s =
23615
ʵÑéÎå º¯ÊýÎļþ
Ò»¡¢ÊµÑéÄ¿µÄ
1. Àí½âº¯ÊýÎļþµÄ¸ÅÄî¡£
2. ÕÆÎÕ¶¨ÒåºÍµ÷ÓÃMATLABº¯ÊýµÄ·½·¨¡£ ¶þ¡¢ÊµÑéÄÚÈÝ
1. ¶¨ÒåÒ»¸öº¯ÊýÎļþ£¬Çó¸ø¶¨¸´ÊýµÄÖ¸Êý¡¢¶ÔÊý¡¢ÕýÏÒºÍÓàÏÒ£¬²¢ÔÚÃüÁîÎļþÖе÷Óøú¯ÊýÎļþ¡£
½â£ºMÎļþÈçÏ£º º¯Êýfushu.MÎļþ£º function [e,l,s,c] = fushu(z) %fushu ¸´ÊýµÄÖ¸Êý£¬¶ÔÊý£¬ÕýÏÒ£¬ÓàÏҵļÆËã %e ¸´ÊýµÄÖ¸Êýº¯ÊýÖµ %l ¸´ÊýµÄ¶ÔÊýº¯ÊýÖµ %s ¸´ÊýµÄÕýÏÒº¯ÊýÖµ %c ¸´ÊýµÄÓàÏÒº¯ÊýÖµ e=exp(z); l=log(z); s=sin(z); c=cos(z); ÃüÁîÎļþM£º z=input('ÇëÊäÈëÒ»¸ö¸´Êýz='); [a,b,c,d]=fushu(z) ÔËËã½á¹ûÈçÏ£º z=input('ÇëÊäÈëÒ»¸ö¸´Êýz='); [a,b,c,d]=fushu(z) ÇëÊäÈëÒ»¸ö¸´Êýz=1+i a = 1.4687 + 2.2874i b = 0.3466 + 0.7854i c = 1.2985 + 0.6350i d = 0.8337 - 0.9889i
2. Ò»ÎïÀíϵͳ¿ÉÓÃÏÂÁз½³Ì×éÀ´±íʾ£º
?m1cos??msin??1?0??0?m10m20?sin?cos??sin??cos?0??a1??0??a??mg?0???2???1? 0??N1??0??????1??N2??m2g?´Ó¼üÅÌÊäÈëm1¡¢m2ºÍ¦ÈµÄÖµ£¬Çóa1¡¢a2¡¢N1ºÍN2µÄÖµ¡£ÆäÖÐgÈ¡9.8£¬ÊäÈë¦ÈʱÒԽǶÈΪµ¥Î»¡£
ÒªÇ󣺶¨ÒåÒ»¸öÇó½âÏßÐÔ·½³Ì×éAX=BµÄº¯ÊýÎļþ£¬È»ºóÔÚÃüÁîÎļþÖе÷Óøú¯ÊýÎļþ¡£
½â£º MÎļþ
º¯Êýfc.MÎļþ: function X= fc(A,B) ¨¹ fcÊÇÇó½âÏßÐÔ·½³ÌµÄº¯Êý %A AÊÇδ֪¾ØÕóµÄϵÊý¾ØÕó X=A\\B£» ÃüÁîMÎļþ£º clc; m1=input('ÊäÈëm1='); m2=input('ÊäÈëm2='); theta=input('ÊäÈëtheta='); x=theta*pi/180; g=9.8; A=[m1*cos(x) -m1 -sin(x) 0 m1*sin(x) 0 cos(x) 0 0 m2 -sin(x) 0 0 0 -cos(x) 1]; B=[0;m1*g;0;m2*g]; X=fc(A,B) ÔËËã½á¹û£º ÊäÈëm1=1 ÊäÈëm2=1 ÊäÈëtheta=30 X = 7.8400 3.3948 6.7896 15.6800 3. Ò»¸ö×ÔÈ»ÊýÊÇËØÊý£¬ÇÒËüµÄÊý×ÖλÖþ¹ýÈÎÒâ¶Ô»»ºóÈÔΪËØÊý¡£ÀýÈç13ÊǾø¶ÔËØÊý¡£ÊÔÇóËùÓÐÁ½Î»¾ø¶ÔËØÊý¡£
ÒªÇ󣺶¨ÒåÒ»¸öÅжÏËØÊýµÄº¯ÊýÎļþ¡£ ½â£ºMÎļþ£º º¯Êýprime.mÎļþ function [p] = prime(p) % ÊäÈëpµÄ·¶Î§£¬ÕÒ³öÆäÖеÄËØÊý m=p(length(p)); for i=2:sqrt(m) n=find(rem(p,i)==0&p~=i); p(n)=[]; %½«pÖÐÄܱ»iÕû³ý£¬¶øÈ´²»µÈÓÚiµÄÔªËØ£¬¼´Ï±êΪnµÄÔªËØÌÞ³ý£¬ÆäÓàµÄ¼´ÎªËØÊý end p; ÃüÁîÎļþ£º clc; p=10:99; p=prime(p); %ÕÒ³ö10µ½99ÄÚµÄËùÓÐËØÊý p=10*rem(p,10)+(p-rem(p,10))/10; %½«pËØÊý¾ØÕóÿ¸öÔªËظöλʮλµ÷»»Ë³Ðò p=prime(p) %ÔÙ¶Ô¶Ô»»ºóµÄËØÊý¾ØÕóÕÒ³öËùÓеÄËØÊý ÔËËã½á¹û£º
p = 11 31 71 13 73 17 37 97 79 4. Éèf(x)?11?£¬±àдһ¸öMATLABº¯ÊýÎļþfx.m£¬Ê¹µÃ
(x?2)2?0.1(x?3)4?0.01µ÷ÓÃf(x)ʱ£¬x¿ÉÓþØÕó´úÈ룬µÃ³öµÄf(x)Ϊͬ½×¾ØÕó¡£
½â£º º¯Êýfx.mÎļþ£º function f= fx(x) %fx fxÇóËãx¾ØÕóϵÄf(x)µÄº¯ÊýÖµ A=0.1+(x-2).^2; B=0.01+(x-3).^4; f=1./A+1./B; ÃüÁîÎļþ£º clc; x=input('ÊäÈë¾ØÕóx='); f=fx(x) ÔËËã½á¹û£º >> x=input('ÊäÈë¾ØÕóx='); f=fx(x) ÊäÈë¾ØÕóx=[7 2;12 5] f = 0.0437 10.9901 0.0101 0.1724
5. ÒÑÖªy?f(40)
f(30)?f(20)(1) µ±f(n)=n+10ln(n2+5)ʱ£¬ÇóyµÄÖµ¡£
(2) µ±f(n)=1¡Á2+2¡Á3+3¡Á4+...+n¡Á(n+1)ʱ£¬ÇóyµÄÖµ¡£ ½â£º(1) º¯Êýf.mÎļþ: function f=f(x) f=x+10*log(x^2+5); ÃüÁîÎļþ£º clc; n1=input('n1='); n2=input('n2='); n3=input('n3='); y1=f(n1); y2=f(n2); y3=f(n3); y=y1/(y2+y3) ÔËËã½á¹ûÈçÏ£º n1=40 n2=30 n3=20 y = 0.6390 (2). º¯Êýg.mÎļþ function s= g(n) for i=1:n g(i)=i*(i+1); end s=sum(g); ÃüÁîÎļþ£º clc; n1=input('n1='); n2=input('n2='); n3=input('n3='); y1=g(n1); y2=g(n2); y3=g(n3); y=y1/(y2+y3)
ÔËËã½á¹ûÈçÏ£º n1=40 n2=30 n3=20 y = 1.7662
ʵÑéÁù ¸ß²ã»æͼ²Ù×÷
Ò»¡¢ÊµÑéÄ¿µÄ
1. ÕÆÎÕ»æÖƶþάͼÐεij£Óú¯Êý¡£ 2. ÕÆÎÕ»æÖÆÈýάͼÐεij£Óú¯Êý¡£ 3. ÕÆÎÕ»æÖÆͼÐεĸ¨Öú²Ù×÷¡£ ¶þ¡¢ÊµÑéÄÚÈÝ
1. Éèy??0.5???3sinx?cosx£¬ÔÚx=0~2¦ÐÇø¼äÈ¡101µã£¬»æÖƺ¯ÊýµÄÇúÏß¡£
1?x2??½â£ºMÎļþÈçÏ£º clc; x=linspace(0,2*pi,101); y=(0.5+3*sin(x)./(1+x.^2)); plot(x,y) ÔËÐнá¹ûÓУº
2. ÒÑÖªy1=x£¬y2=cos(2x)£¬y3=y1¡Áy2£¬Íê³ÉÏÂÁвÙ×÷£º (1) ÔÚͬһ×ø±êϵÏÂÓò»Í¬µÄÑÕÉ«ºÍÏßÐÍ»æÖÆÈýÌõÇúÏß¡£ (2) ÒÔ×ÓͼÐÎʽ»æÖÆÈýÌõÇúÏß¡£
(3) ·Ö±ðÓÃÌõÐÎͼ¡¢½×ÌÝͼ¡¢¸ËͼºÍÌî³äͼ»æÖÆÈýÌõÇúÏß¡£ ½â£º£¨1£© MÎļþ£º 2
clc; x=-pi:pi/100:pi; y1=x.^2; y2=cos(2*x); y3=y1.*y2; plot(x,y1,'b-',x,y2,'r:',x,y3,'k--') ÔËÐнá¹û£º
£¨2£©MÎļþ£º clc; x=-pi:pi/100:pi; y1=x.^2; y2=cos(2*x); y3=y1.*y2; subplot(1,3,1); plot(x,y1,'b-'); title('y1=x^2'); subplot(1,3,2); plot(x,y2,'r:'); title('y2=cos(2x)'); subplot(1,3,3); plot(x,y3,'k--'); title('y3=y1*y2'); .ÔËÐнá¹û£º
£¨3£©MÎļþ£º clc; x=-pi:pi/100:pi; y1=x.^2; y2=cos(2*x); y3=y1.*y2; subplot(2,2,1); plot(x,y1,'b-',x,y2,'r:',x,y3,'k--'); subplot(2,2,2); bar(x,y1,'b'); title('y1=x^2'); subplot(2,2,3); bar(x,y2,'r'); title('y2=cos(2x)'); subplot(2,2,4); bar(x,y3,'k'); title('y3=y1*y2');
ÓÉÉÏÃæµÄMÎļþ£¬Ö»ÒªÒÀ´Î½«¡°bar¡±¸ÄΪ¡°stairs¡±¡¢¡°stem¡±¡¢¡°fill¡±,ÔÙÊʵ±¸ü¸ÄÇø¼äÈ¡µÄµãÊý£¬ÔËÐгÌÐò¼´¿É£¬ ¼´ÓÐÏÂÃæµÄ½á¹û£º
3. ÒÑÖª
?x??x?0??e2 y???1ln(x?1?x2)x?0??2ÔÚ-5¡Üx¡Ü5Çø¼ä»æÖƺ¯ÊýÇúÏß¡£
½â£ºMÎļþ£º clc; x=-5:0.01:5; y=(x+sqrt(pi))/(exp(2)).*(x<=0)+0.5*log(x+sqrt(1+x.^2)).*(x>0); plot(x,y) ÔËÐнá¹û£º
ÓÉͼ¿É¿´³ö£¬º¯ÊýÔÚÁãµã²»Á¬Ðø¡£
4. »æÖƼ«×ø±êÇúÏߦÑ=asin(b+n¦È)£¬²¢·ÖÎö²ÎÊýa¡¢b¡¢n¶ÔÇúÏßÐÎ×´µÄÓ°Ïì¡£ ½â£ºMÎļþÈçÏ£º clc; theta=0:pi/100:2*pi; a=input('ÊäÈëa='); b=input('ÊäÈëb='); n=input('ÊäÈën='); rho=a*sin(b+n*theta); polar(theta,rho,'m') ²ÉÓÿØÖƱäÁ¿·¨µÄ°ì·¨£¬¹Ì¶¨Á½¸ö²ÎÊý£¬±ä¶¯µÚÈý¸ö²ÎÊý¹Û²ìÊä³öͼÏóµÄ±ä»¯¡£
·ÖÎö½á¹û£ºÓÉÕâ8¸öͼ֪µÀ£¬
µ±a,n¹Ì¶¨Ê±£¬Í¼ÐεÄÐÎ×´Ò²¾Í¹Ì¶¨ÁË£¬bÖ»Ó°ÏìͼÐεÄÐýתµÄ½Ç¶È;
µ±a,b¹Ì¶¨Ê±£¬nÖ»Ó°ÏìͼÐεÄÉÈÐÎÊý£¬ÌرðµØ£¬µ±nÊÇÆæÊýʱ£¬ÉÈÒ¶Êý¾ÍÊÇn,µ±ÊÇżÊýʱ£¬ÉÈÒ¶ÊýÔòÊÇ2n¸ö;
µ±b,n¹Ì¶¨Ê±£¬aÓ°ÏìµÄÊÇͼÐδóС£¬ÌرðµØ£¬µ±aÊÇÕûÊýʱ£¬Í¼Ðΰ뾶´óС¾ÍÊÇa¡£ 5. »æÖƺ¯ÊýµÄÇúÏßͼºÍµÈ¸ßÏß¡£
z?cosxcosye?x2?y24
ÆäÖÐxµÄ21¸öÖµ¾ùÔÈ·Ö²¼[-5£¬5]·¶Î§£¬yµÄ31¸öÖµ¾ùÔÈ·Ö²¼ÔÚ[0£¬10]£¬ÒªÇóʹÓÃsubplot(2,1,1)ºÍsubplot(2,1,2)½«²úÉúµÄÇúÃæͼºÍµÈ¸ßÏßͼ»ÔÚͬһ¸ö´°¿ÚÉÏ¡£
½â£ºMÎļþ£º clc; x=linspace(-5,5,21); y=linspace(0,10,31); [x,y]=meshgrid(x,y); z=cos(x).*cos(y).*exp(-sqrt(x.^2+y.^2)/4); subplot(2,1,1); surf(x,y,z); title('ÇúÃæͼ'); subplot(2,1,2); surfc(x,y,z); title('µÈ¸ßÏßͼ'); ÔËÐнá¹û£º
6. »æÖÆÇúÃæͼÐΣ¬²¢½øÐвåÖµ×ÅÉ«´¦Àí¡£
?x?cosscost??3?? y?cosssint0?s?,0?t??22???z?sins½â£ºMÎļþ£º
clc; s=0:pi/100:pi/2; t=0:pi/100:3*pi/2; [s,t]=meshgrid(s,t); x=cos(s).*cos(t); y=cos(s).*sin(t); z=sin(s); subplot(2,2,1); mesh(x,y,z); title('δ×ÅÉ«µÄͼÐÎ'); subplot(2,2,2); surf(x,y,z); title('shading faceted£¨È±Ê¡£©'); subplot(2,2,3); surf(x,y,z);shading flat; title('shading flat'); subplot(2,2,4); surf(x,y,z);shading interp; title('shading interp'); ÔËÐнá¹ûÓУº
ʵÑéÆß µÍ²ã»æͼ²Ù×÷
¶þ¡¢ÊµÑéÄÚÈÝ
1. ½¨Á¢Ò»¸öͼÐδ°¿Ú£¬Ê¹Ö®±³¾°ÑÕɫΪºìÉ«£¬²¢ÔÚ´°¿ÚÉϱ£ÁôÔÓеIJ˵¥Ï¶øÇÒÔÚ°´ÏÂÊó±êÆ÷µÄ×ó¼üÖ®ºóÏÔʾ³öLeft Button Pressed×ÖÑù¡£
½â£ºMÎļþÈçÏ£º clc; hf=figure('color',[1 0 0],... 'WindowButtonDownFcn','disp(''Left Button Pressed.'')'); ÔËÐнá¹û£º
×ó»÷Êó±êºó£º
2. ÏÈÀûÓÃĬÈÏÊôÐÔ»æÖÆÇúÏßy=x2e2x£¬È»ºóͨ¹ýͼÐξä±ú²Ù×÷À´¸Ä±äÇúÏßµÄÑÕÉ«¡¢ÏßÐͺÍÏß¿í£¬²¢ÀûÓÃÎļþ¶ÔÏó¸øÇúÏßÌí¼ÓÎÄ×Ö±ê×¢¡£
½â£ºMÎļþ£º clc; x=-2:0.01:2; y=x.^2.*exp(2*x); h=plot(x,y); set(h,'color',[0.4,0.2,0.5],'linestyle','--',... 'linewidth',2); text(1.5,1.5^2*exp(2*1.5),'\\leftarrow x^2exp(2x)','fontsize',9); ÔËÐнá¹û:
3. ÀûÓÃÇúÃæ¶ÔÏó»æÖÆÇúÃæv(x,t)=10e-0.01xsin(2000¦Ðt-0.2x+¦Ð)¡£ ½â£ºMÎļþ£º
clc; x=0:0.1:2*pi; [x,t]=meshgrid(x); v=10*exp(-0.01*x).*sin(2000*pi*t-0.2*x+pi); axes('view',[-37,30]); hs=surface(x,t,v,'facecolor',... [0.2,0.3,0.3],'edgecolor','flat'); grid on; xlabel('x-axis'); ylabel('y-axis'); zlabel('z-axis'); title('mesh-surf'); pause %°´ÈÎÒâ¼ü¼ÌÐø set(hs,'FaceColor','flat'); text(0,0,0,'ÇúÃæ'); ÔËÐнá¹û£º
°´ÈÎÒâ¼ü¼ÌÐø£º
4. ÒÔÈÎÒâλÖÃ×ÓͼÐÎʽ»æÖƳöÕýÏÒ¡¢ÓàÏÒ¡¢ÕýÇкÍÓàÇк¯ÊýÇúÏß¡£
5. Éú³ÉÒ»¸öÔ²ÖùÌ壬²¢½øÐйâÕպͲÄÖÊ´¦Àí¡£ ½â£ºMÎļþ£º [x,y,z]=cylinder(3,500); %cylinderÊÇÉú³ÉÖùÌåµÄº¯Êý surf(x,y,z); title('Ô²ÖùÌåµÄ¹âÕպͲÄÁÏ´¦Àí'); Xlabel('X-axis'); Ylabel('Y-axis'); Zlabel('Z-axis'); axis([-5,5,-5,5,0,1]) grid off; light('Color','r','Position',[-4,0,0],'style','infinite'); shading interp; material shiny; view(0,10); lighting phong; axis off; ÔËÐнá¹û£º
ʵÑé°Ë Êý¾Ý´¦ÀíÓë¶àÏîʽ¼ÆËã
Ò»¡¢ÊµÑéÄ¿µÄ
1. ÕÆÎÕÊý¾Ýͳ¼ÆºÍ·ÖÎöµÄ·½·¨¡£
2. ÕÆÎÕÊýÖµ²åÖµÓëÇúÏßÄâºÏµÄ·½·¨¼°ÆäÓ¦Óᣠ3. ÕÆÎÕ¶àÏîʽµÄ³£ÓÃÔËËã¡£ ¶þ¡¢ÊµÑéÄÚÈÝ
1. ÀûÓÃMATLABÌṩµÄrandº¯ÊýÉú³É30000¸ö·ûºÏ¾ùÔÈ·Ö²¼µÄËæ»úÊý£¬È»ºó¼ìÑéËæ»úÊýµÄÐÔÖÊ£º
(1) ¾ùÖµºÍ±ê×¼·½²î¡£ (2) ×î´óÔªËغÍ×îСԪËØ¡£
(3) ´óÓÚ0.5µÄËæ»úÊý¸öÊýÕ¼×ÜÊýµÄ°Ù·Ö±È¡£ ½â£º MÎļþ: clc; x=rand(1,30000); mu=mean(x) %ÇóÕâ30000¸ö¾ùÔÈ·Ö²¼Ëæ»úÊýµÄƽ¾ùÖµ sig=std(x) %ÇóÆä±ê×¼²î¦Ò1 y=length(find(x>0.5)); %ÕÒ³ö´óÓÚ0.5ÊýµÄ¸öÊý p=y/30000 %´óÓÚ0.5µÄËùÕ¼°Ù·Ö±È ÔËÐнá¹û£º mu = 0.499488553231043 sig = 0.288599933559786 p = 0.499400000000000 2. ½«100¸öѧÉú5ÃŹ¦¿ÎµÄ³É¼¨´æÈë¾ØÕóPÖУ¬½øÐÐÈçÏ´¦Àí£º (1) ·Ö±ðÇóÿÃſεÄ×î¸ß·Ö¡¢×îµÍ·Ö¼°ÏàӦѧÉúÐòºÅ¡£ (2) ·Ö±ðÇóÿÃſεÄƽ¾ù·ÖºÍ±ê×¼·½²î¡£
(3) 5ÃÅ¿Î×Ü·ÖµÄ×î¸ß·Ö¡¢×îµÍ·Ö¼°ÏàӦѧÉúÐòºÅ¡£
(4) ½«5ÃÅ¿Î×Ü·Ö°´´Ó´óµ½Ð¡Ë³Ðò´æÈëzcjÖУ¬ÏàӦѧÉúÐòºÅ´æÈëxsxh¡£
Ìáʾ£ºÉÏ»úµ÷ÊÔʱ£¬Îª±ÜÃâÊäÈëѧÉú³É¼¨µÄÂé·³£¬¿ÉÓÃÈ¡Öµ·¶Î§ÔÚ[45,95]Ö®¼äµÄËæ»ú¾ØÕóÀ´±íʾѧÉú³É¼¨¡£
½â£ºMÎļþ£º clc; t=45+50*rand(100,5); P=fix(t); %Éú³É100¸öѧÉú5ÃŹ¦¿Î³É¼¨ [x,l]=max(P) %xΪÿÃÅ¿Î×î¸ß·ÖÐÐÏòÁ¿,lΪÏàӦѧÉúÐòºÅ [y,k]=min(P) %yΪÿÃÅ¿Î×îµÍ·ÖÐÐÏòÁÐ,kΪÏàӦѧÉúÐòºÅ mu=mean(P) %ÿÃſεÄƽ¾ùÖµÐÐÏòÁ¿ sig=std(P) %ÿÃſεıê×¼²îÐÐÏòÁ¿ s=sum(P,2) %5ÃÅ¿Î×Ü·ÖµÄÁÐÏòÁ¿ [X,m]=max(s)%5ÃÅ¿Î×Ü·ÖµÄ×î¸ß·ÖXÓëÏàӦѧÉúÐòºÅm [Y,n]=min(s)%5ÃÅ¿Î×Ü·ÖµÄ×îµÍ·ÖYÓëÏàӦѧÉúÐòºÅn [zcj,xsxh]=sort(s) %zcjΪ5ÃÅ¿Î×Ü·Ö´Ó´óµ½Ð¡ÅÅÐò£¬ÏàӦѧÉúÐòºÅxsxh ÔËÐнá¹û£º
3. ijÆøÏó¹Û²âµÃijÈÕ6:00~18:00Ö®¼äÿ¸ô2hµÄÊÒÄÚÍâζȣ¨0C£©ÈçʵÑé±í1Ëùʾ¡£
0
ʵÑé±í1 ÊÒÄÚÍâζȹ۲â½á¹û£¨C£©
ʱ¼äh
6
8 20.0 19.0
10 22.0 24.0
12 25.0 28.0
14 30.0 34.0
16 28.0 32.0
18 24.0 30.0
ÊÒÄÚζÈt1 18.0 ÊÒÍâζÈt2 15.0
ÊÔÓÃÈý´ÎÑùÌõ²åÖµ·Ö±ðÇó³ö¸ÃÈÕÊÒÄÚÍâ6:30~18:30Ö®¼äÿ¸ô2h¸÷µãµÄ½üËÆζȣ¨0C£©¡£ ½â£º
MÎļþ£º clc; h=6:2:18; t1=[18.0 20.0 22.0 25.0 30.0 28.0 24.0]; t2=[15.0 19.0 24.0 28.0 34.0 32.0 30.0]; T1=interp1(h,t1,'spline')%ÊÒÄÚµÄ3´ÎÑùÌõ²åÖµÎÂ¶È T2=interp1(h,t2,'spline')%ÊÒÍâµÄ3´ÎÑùÌõ²åֵζÈ
ÔËÐнá¹û£º
T1 = Columns 1 through 3 40.000000000000703 44.000000000001130 48.000000000001705 Columns 4 through 6 54.000000000002885 64.000000000005883 60.000000000004512 Column 7 52.000000000002444 T2 = Columns 1 through 3 34.000000000000284 42.000000000000902 52.000000000002444 Columns 4 through 6 60.000000000004512 72.000000000009408 68.000000000007503 Column 7 64.000000000005883 4. ÒÑÖªlgxÔÚ[1,101]Çø¼ä10¸öÕûÊý²ÉÑùµãµÄº¯ÊýÖµÈçʵÑé±í2Ëùʾ¡£
ʵÑé±í2 lgxÔÚ10¸ö²ÉÑùµãµÄº¯ÊýÖµ
x 1 11 21 31 41 51 61 71 81 91 101
lgx 0 1.0414 1.3222 1.4914 1.6128 1.7076 1.7853 1.8513 1.9085 1.9510 2.0043
ÊÔÇólgxµÄ5´ÎÄâºÏ¶àÏîʽp(x)£¬²¢»æÖƳölgxºÍp(x)ÔÚ[1,101]Çø¼äµÄº¯ÊýÇúÏß¡£ ½â£º
MÎļþ£º x=1:10:101; y=lg10(x); P=polyfit(x,y,5) y1=polyval(P,x); plot(x,y,':o',x,y1,'-*') ÔËÐнá¹û£º Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT. > In polyfit at 80 P = 0.0000 -0.0000 0.0001 -0.0058 0.1537 -0.1326 £¨ÕâÀï³öÏÖ¾¯¸æÊÇÌáʾ²»±ØÓÃ5¼Ûº¯Êý¾ÍÒѾ¿ÉÒÔÍêÃÀÄâºÏÁË£¬ÊÇ¿ÉÒÔ½µ¼ÛÄâºÏ¡££©
ÔÚ[1,101]µÄÇø¼äº¯ÊýͼÏñ
5. ÓÐ3¸ö¶àÏîʽP1(x)=x4+2x3+4x2+5£¬P2(x)=x+2£¬P3(x)=x2+2x+3£¬ÊÔ½øÐÐÏÂÁвÙ×÷£º
(1) ÇóP(x)=P1(x)+P2(x)P3(x)¡£ (2) ÇóP(x)µÄ¸ù¡£
(3) µ±xÈ¡¾ØÕóAµÄÿһԪËØʱ£¬ÇóP(x)µÄÖµ¡£ÆäÖÐ £º
1.2?1.4???1?
A??0.7523.5???52.5??0?(4) µ±ÒÔ¾ØÕóAΪ×Ô±äÁ¿Ê±£¬ÇóP(x)µÄÖµ¡£ÆäÖÐAµÄÖµÓëµÚ(3)ÌâÏàͬ¡£
½â£ºMÎļþ£º clc;clear; p1=[1,2,4,0,5]; p2=[1,2]; p3=[1,2,3]; p2=[0,0,0,p2]; p3=[0,0,p3]; p4=conv(p2,p3); %p4ÊÇp2Óëp3µÄ³Ë»ýºóµÄ¶àÏîʽ np4=length(p4); np1=length(p1); p=[zeros(1,np4-np1) p1]+p4 %Çóp(x)=p1(x)+p2(x) x=roots(p) %Çóp(x)µÄ¸ù A=[-1 1.2 -1.4;0.75 2 3.5;0 5 2.5]; y=polyval(p,A) %xÈ¡¾ØÕóAµÄÿһԪËØʱµÄp(x)Öµ ÔËÐнá¹û£º
p = 0 0 0 0 1 3 8 7 11 x = -1.3840 + 1.8317i -1.3840 - 1.8317i -0.1160 + 1.4400i -0.1160 - 1.4400i y = 1.0e+003 * 0.0100 0.0382 0.0125 0.0223 0.0970 0.4122 0.0110 1.2460 0.1644
ʵÑé¾Å Êýֵ΢»ý·ÖÓë·½³ÌÊýÖµÇó½â
Ò»¡¢ÊµÑéÄ¿µÄ
1. ÕÆÎÕÇóÊýÖµµ¼ÊýºÍÊýÖµ»ý·ÖµÄ·½·¨¡£ 2. ÕÆÎÕ´úÊý·½³ÌÊýÖµÇó½âµÄ·½·¨¡£ 3. ÕÆÎÕ³£Î¢·Ö·½³ÌÊýÖµÇó½âµÄ·½·¨¡£ ¶þ¡¢ÊµÑéÄÚÈÝ
1. Çóº¯ÊýÔÚÖ¸¶¨µãµÄÊýÖµµ¼Êý¡£
xf(x)?1 ½â£ºMÎļþ£º x2x36x2x3x2,x?1,2,3
02clc;clear; x=1; i=1; f=inline('det([x x^2 x^3;1 2*x 3*x^2;0 2 6*x])'); while x<=3.01 g(i)=f(x); i=i+1; x=x+0.01; %ÒÔ0.01µÄ²½³¤Ôö¼Ó£¬¿ÉÔÙËõС²½³¤Ìá¸ß¾«¶È end g; t=1:0.01:3.01; dx=diff(g)/0.01; %²î·Ö·¨½üËÆÇóµ¼ f1=dx(1) %x=1µÄÊýÖµµ¹Êý f2=dx(101) %x=2µÄÊýÖµµ¹Êý f3=dx(length(g)-1) %x=3µÄÊýÖµµ¹Êý ÔËÐнá¹û£º f1 = 6.0602 f2 = 24.1202 f3 = 54.1802 2. ÓÃÊýÖµ·½·¨Ç󶨻ý·Ö¡£ (1) I1?(2) I2??2?02?cost2?4sin(2t)2?1dtµÄ½üËÆÖµ¡£
ln(1?x)dt 21?x?0½â£ºMÎļþ£º clc;clear; f=inline('sqrt(cos(t.^2)+4*sin(2*t).^2+1)'); I1=quad(f,0,2*pi) g=inline('log(1+x)./(1+x.^2)'); I2=quad(g,0,2*pi) ÔËÐнá¹û£º I1 = 10.4285 I2 = 0.9997 3. ·Ö±ðÓÃ3ÖÖ²»Í¬µÄÊýÖµ·½·¨½âÏßÐÔ·½³Ì×é¡£
?6x?5y?2z?5u??4?9x?y?4z?u?13? ?3x?4y?2z?2u?1???3x?9y?2u?11½â£ºMÎļþ£º
clc;clear; A=[6 5 -2 5;9 -1 4 -1;3 4 2 -2;3 -9 0 2]; b=[-4 13 1 11]'; x=A\\b y=inv(A)*b [L,U]=lu(A); z=U\\(L\\b) ÔËÐнá¹û£º x = 0.6667 -1.0000 1.5000 -0.0000 y = 0.6667 -1.0000 1.5000 -0.0000 z = 0.6667 -1.0000 1.5000 -0.0000 4. Çó·ÇÆë´ÎÏßÐÔ·½³Ì×éµÄͨ½â¡£
?2x1?7x2?3x3?x4?6??3x1?5x2?2x3?2x4?4 ?9x?4x?x?7x?2234?1½â£ºMÎļþ function [x,y]=line_solution(A,b) [m,n]=size(A); y=[ ]; if norm(b)>0 %·ÇÆë´Î·½³Ì×é if rank(A)==rank([A,b]) if rank(A)==n disp('ÓÐΨһ½âx'); x=A\\b; else disp('ÓÐÎÞÇî¸ö½â£¬Ìؽâx£¬»ù´¡½âϵy'); x=A\\b; y=null(A,'r'); end else disp('ÎÞ½â'); x=[ ]; end else %Æë´Î·½³Ì×é disp('ÓÐÁã½âx'); x=zeros(n,1); if rank(A)