ÆÏÌѾƵÄÆÀ¼Û
ÕªÒª
±¾ÎÄÖ÷Òª¶ÔÁ½×éÆÀ¾ÆÔ±µÄÆÀ¼Û½á¹û¼°¿ÉÐŶȡ¢Äð¾ÆÆÏÌѵķּ¶¡¢Äð¾ÆÆÏÌÑÓëÆÏÌѾƵÄÀí»¯ÐÔÖÊÖ®¼äµÄÁªÏµºÍÊÇ·ñÓ°ÏìÆÏÌѾƵÄÖÊÁ¿½øÐзÖÎö¼°Ñо¿¡£ ¶ÔÓÚÎÊÌâÒ»£¬ÀûÓø½¼þÒ»ÖÐÆÀ¾ÆԱȺÌå¶Ôºì¡¢°×ÆÏÌѾƽøÐÐÁ½´ÎÆÀ·ÖµÄÊý¾Ý£¬ÔËÓÃt¼ìÑéÄ£ÐÍ£¬Çó³öPÖµÓÃÓÚÅж¨ÓÐÎÞÏÔÖøÐÔ²îÒì¡£³öÓÚ¶Ô½á¹ûµÄ¿ÆѧÐÔ¿¼ÂÇ£¬½¨Á¢Á˶þÖµ»¯¿ÉÐŶÈÄ£ÐͶÔÆÀ¾ÆÔ±µÄ¿ÉÐŶȽøÐж¨Á¿ÃèÊö¡£Èô¿ÉÐŶÈÖµ
piÔ½´ó£¬
Ôò˵Ã÷ÆÀ¼Û½á¹ûÔ½¿ÉÐÅ¡£Í¨¹ý±È½ÏµÚÒ»¡¢¶þ×éµÄPÖµ£¬µÃ³öµÚÒ»×éµÄ¿ÉÐŶȸü¸ßЩ¡£
¶ÔÓÚÎÊÌâ¶þ£¬ÔËÓÃÖ÷³É·Ö·ÖÎö·¨£¬Ñ¡È¡ÆÏÌѾÆÑùÆ·Öк¬ÓеÄÒ»¼¶Ö¸±êÎïµÄÊý¾Ý£¬µÃ³ö¹±Ï×ÂÊ¡£ÔÙÀûÓù±Ï×ÂÊ£¨¹±Ï×ÂÊÔ½´ó¶ÔÆÏÌѵÄÖÊÁ¿Ó°ÏìÔ½´ó£©µÄ´óС£¬Ñ¡³öÓ°ÏìÄð¾ÆÆÏÌÑ·Ö¼¶µÄÖ÷³É·ÖÒòËØ£¬²¢ÀûÓúìµØÇòÆÏÌѵķּ¶±ê×¼¶ÔÄð¾ÆÆÏÌѽøÐзּ¶¡£
¶ÔÓÚÎÊÌâÈý£¬Ê×ÏÈÀûÓÃÖ÷³É·Ö·ÖÎö·¨ºÍSPSSÈí¼þ¶ÔºìÆÏÌѾƵÄÁ¿»¯Ö¸±ê½øÐÐɸѡ£¬Ñ¡³ö×Ü·Ó¡¢¾Æ×Ü»Æͪ¡¢°×޼«´¼µÈ6ÖÖÎïÖÊ×÷Ϊ¶ÔÆÏÌѾÆÀí»¯Ö¸±êµÄÒ»×éÑù±¾¡£½èÓÃÔÚÎÊÌâ¶þÖÐɸѡ³öÀ´µÄ»¨É«ÜÕ¡¢¸ÉÎïÖʺ¬Á¿¡¢Ë³Ê½°×޼«´¼ÜÕµÈÁùÖÖºìÆÏÌѵÄÀí»¯Ö¸±ê×÷ΪÁíÒ»×éÑù±¾¡£È»ºóÀûÓÃÉÏÊöÁ½×éÊý¾Ý£¬½¨Á¢µäÐÍÏà¹Ø·ÖÎöÄ£ÐÍ£¬Çó³öÆÏÌѾÆÀí»¯Ö¸±êºÍÄð¾ÆÆÏÌѵÄÏà¹ØϵÊý£¬´Ó¶øÈ·¶¨Á½ÕßÖ®¼äµÄ¹ØÁª¶È¡£×îºó½¨Á¢¶þÔª»Ø¹éÄ£Ðͽø¶øÇó³öÁ½ÕßÖ®¼äµÄ¹Øϵ¡£
¶ÔÓÚÎÊÌâËÄ£¬ÔËÓÃÖ÷³É·Ö·ÖÎö½µÎ¬µÄ˼Ï룬ÔËÓûÒÉ«¹ØÁª¶ÈÄ£ÐÍ£¬ÀûÓü¸×é±äÁ¿µÄÊý¾Ý£¬Í¨¹ý MATLABÈí¼þÇóµÃ¹ØÁª¶È£¬½ø¶øÀ´·´Ó³Á½±äÁ¿Ö®¼äµÄÏßÐÔ¹Øϵ¡£¸ù¾Ý¹ØÁª¶ÈµÄ´óС£¬¿¼ÂǶ෽ÃæµÄÒòËضÔÆÏÌѾƵÄÖÊÁ¿½øÐÐÆÀ¼ÛÓëÂÛÖ¤¡£
¹Ø¼ü´Ê£ºt¼ìÑé·¨¡¢¿ÉÐŶÈÄ£ÐÍ¡¢Ö÷³É·Ö·ÖÎö·¨¡¢¶àÔª»Ø¹éÄ£ÐÍ ¡¢»ÒÉ«¹ØÁª¶È
1
1 ÎÊÌâÖØÊö
È·¶¨ÆÏÌѾÆÖÊÁ¿Ê±Ò»°ãÊÇͨ¹ýƸÇëÒ»ÅúÓÐ×ÊÖʵÄÆÀ¾ÆÔ±½øÐÐÆ·ÆÀ¡£Ã¿¸öÆÀ¾ÆÔ±ÔÚ¶ÔÆÏÌѾƽøÐÐÆ·³¢ºó¶ÔÆä·ÖÀàÖ¸±ê´ò·Ö£¬È»ºóÇóºÍµÃµ½Æä×Ü·Ö£¬´Ó¶øÈ·¶¨ÆÏÌѾƵÄÖÊÁ¿¡£Äð¾ÆÆÏÌѵĺûµÓëËùÄðÆÏÌѾƵÄÖÊÁ¿ÓÐÖ±½ÓµÄ¹Øϵ£¬ÆÏÌѾƺÍÄð¾ÆÆÏÌѼì²âµÄÀí»¯Ö¸±ê»áÔÚÒ»¶¨³Ì¶ÈÉÏ·´Ó³ÆÏÌѾƺÍÆÏÌѵÄÖÊÁ¿¡£¸½¼þ1¸ø³öÁËijһÄê·ÝһЩÆÏÌѾƵÄÆÀ¼Û½á¹û£¬¸½¼þ2ºÍ¸½¼þ3·Ö±ð¸ø³öÁ˸ÃÄê·ÝÕâЩÆÏÌѾƵĺÍÄð¾ÆÆÏÌѵijɷÖÊý¾Ý¡£Çë³¢ÊÔ½¨Á¢ÊýѧģÐÍÌÖÂÛÏÂÁÐÎÊÌ⣺
1.·ÖÎö¸½¼þ1ÖÐÁ½×éÆÀ¾ÆÔ±µÄÆÀ¼Û½á¹ûÓÐÎÞÏÔÖøÐÔ²îÒ죬ÄÄÒ»×é½á¹û¸ü¿ÉÐÅ£¿
2.¸ù¾ÝÄð¾ÆÆÏÌѵÄÀí»¯Ö¸±êºÍÆÏÌѾƵÄÖÊÁ¿¶ÔÕâЩÄð¾ÆÆÏÌѽøÐзּ¶¡£ 3.·ÖÎöÄð¾ÆÆÏÌÑÓëÆÏÌѾƵÄÀí»¯Ö¸±êÖ®¼äµÄÁªÏµ¡£
4£®·ÖÎöÄð¾ÆÆÏÌѺÍÆÏÌѾƵÄÀí»¯Ö¸±ê¶ÔÆÏÌѾÆÖÊÁ¿µÄÓ°Ï죬²¢ÂÛÖ¤ÄÜ·ñ ÓÃÆÏÌѺÍÆÏÌѾƵÄÀí»¯Ö¸±êÀ´ÆÀ¼ÛÆÏÌѾƵÄÖÊÁ¿¡£ ¸½¼þ1£ºÆÏÌѾÆÆ·³¢ÆÀ·Ö±í£¨º¬4¸ö±í¸ñ£©
¸½¼þ2£ºÆÏÌѺÍÆÏÌѾƵÄÀí»¯Ö¸±ê£¨º¬2¸ö±í¸ñ£© ¸½¼þ3£ºÆÏÌѺÍÆÏÌѾƵķ¼ÏãÎïÖÊ£¨º¬4¸ö±í¸ñ£©
2 ÎÊÌâ¼ÙÉè
1. ÆÀ¾ÆÔ±¼äµÄÆÀ¼Û³ß¶È¡¢ÆÀ¼ÛλÖúÍÆÀ¼Û·½ÏòÏàͬ
2. ¶þ¼¶Ö¸±êÀïµÄÒòËضÔÄð¾ÆÆÏÌÑ·Ö¼¶µÄÓ°Ïì²»´ó£¬¿ÉºöÂÔ²»¼Æ£» 3. ÌâÖиø³öµÄËùÓÐÊý¾Ý׼ȷÎÞÎó£»
4¡¢²âÊÔÀí»¯Ö¸±êÓõÄÆÏÌѺÍÏàÓ¦¾ÆÑùµÄÄð¾ÆÆÏÌÑÊÇͬһÅú£»
5¡¢¸½¼þ2¡¢3ÖеÄÀí»¯Ö¸±ê¾ßÓдú±íÐÔ£¬¿ÉÒÔÕæʵ·´Ó³¸ÃÆ·ÖÖÆÏÌѺÍÆÏÌѾƵÄÎïÀí»¯Ñ§ÌØÐÔ£»
3 ·ûºÅ˵Ã÷
·ûºÅ x1,x2 ss1,ss2 ±íʾµÄÒâÒå ¾ùÖµ ¾ùÀë²îƽ·½ºÍ ´¦ÀíµÄÖظ´´ÎÊý ͳ¼ÆÁ¿ ×ÔÓÉ¶È n n1,n2 df Sx-x±ê×¼Îó²î ¿ÉÐŶÈÖµ ÆÀ¾ÆÔ±¶ÔÆÀ¼Û¶ÔÏóµÄ×ÛºÏÆÀ¼Û½á¹û 12pi di(A)
2
p1i p0i ÆÀ¾ÆÔ±EiµÄͨ¹ýÕýÈ·ÂÊ ÆÀ¾ÆÔ±Ei²»Í¨¹ýÕýÈ·ÂÊ ¹±Ï×ÂÊ Ö÷³É·Ö¸ººÉ Ö÷³É·ÖµÄµÃ·Ö Ô¼ÙÉè µÚiÑùÆ·µÚk¸öÖ¸±êµÄÖµ ¹ØÁª¶ÈϵÊý ¹ØÁª¶È ·Ö±æϵÊý Z lij iZ A0 xi(k) ? iRi ? 4 ÎÊÌâ·ÖÎö
4.1ÎÊÌâÒ»µÄ·ÖÎö
Õë¶ÔÎÊÌâÒ»£¬ÈôÒªÆÀÂÛÁ½×éÆÀ¾ÆÔ±µÄÆÀ¼Û½á¹ûÓÐÎÞÏÔÖøÐÔ²îÒ죬ÔòÐèÔÚÆÀ¾ÆÔ±¼äµÄÆÀ¼Û³ß¶È¡¢ÆÀ¼ÛλÖúÍÆÀ¼Û·½ÏòÒ»ÖµÄÇ°ÌáÏ£¬ÀûÓø½¼þÒ»ÖеÄÊý¾Ý£¬¿¼Âǵ½Ã¿×éÖ»ÓÐʮλÆÀί£¬ÊôÓÚСÑù±¾±È½Ï£¬¶øÇÒÿ×éÑù±¾ÊýÁ¿ÏàµÈ£¬ÔËÓÃt¼ìÑé·¨£¬Çó³öPÖµÓëtµÄÁÙ½çÖµ±È½Ï£¬µÃ³öÁ½×éÆÀ¾ÆÔ±¶Ôºì¡¢°×ÆÏÌѾƵÄÆÀ¼Û½á¹ûÊÇ·ñÓÐÏÔÖøÐÔ²îÒì¡£»ùÓÚ½á¹ûµÄ׼ȷÐÔ£¬±¾ÎĽ¨Á¢Á˶þÖµ»¯¿ÉÐŶÈÄ£ÐͶÔÆÀ¾ÆÔ±µÄ¿ÉÐŶȽøÐж¨Á¿ÃèÊö¡£Èô¿ÉÐŶÈÖµPiÔ½´ó£¬Ôò˵Ã÷ÆÀ¼Û½á¹ûÔ½¿ÉÐÅ¡£
4.2ÎÊÌâ¶þµÄ·ÖÎö
Õë¶ÔÎÊÌâ¶þ£¬ÈôÒª¸ù¾ÝÄð¾ÆÆÏÌѵÄÀí»¯Ö¸±êºÍÆÏÌѾƵÄÖÊÁ¿¶ÔÕâЩÄð¾ÆÆÏÌѽøÐзּ¶£¬ÔòÐèÕÒ³öÄð¾ÆÆÏÌѵÄÀí»¯Ö¸±êÓëÆÏÌѾÆÖÊÁ¿Ö®¼äµÄÁªÏµ¡£ÓÉÓÚ¸½¼þ¶þÖеÄÊý¾ÝÅӴ󣬾²éÔÄ×ÊÁÏ£¬±¾ÎÄ×îÖÕÔËÓÃÒ»¼¶Ö¸±êµÄÒòËØÀ´½â´ðÎÊÌâ¡£Òò´Ë£¬½èÓÃÖ÷³É·Ö·ÖÎö·¨£¬ÀûÓù±Ï×ÂÊ£¨¹±Ï×ÂÊÔ½´ó¶ÔÆÏÌѵÄÖÊÁ¿Ó°ÏìÔ½´ó£©µÄ´óС£¬Ñ¡³ö¶ÔÓ°ÏìÄð¾ÆÆÏÌÑ·Ö¼¶µÄÒòËØ£¬²¢ÀûÓúìµØÇòÆÏÌѵķּ¶±ê×¼¶ÔÄð¾ÆÆÏÌѽøÐзּ¶¡£
4.3ÎÊÌâÈýµÄ·ÖÎö
Õë¶ÔÎÊÌâÈý£¬¿¼ÂÇÄð¾ÆÆÏÌѺÍÆÏÌѾƵÄÀí»¯Ö¸±êÕâÁ½×é±äÁ¿Ö®¼äµÄÁªÏµ£¬±¾ÎIJÉÓõäÐÍÏà¹Ø·ÖÎö·¨£¬¸ù¾Ý¼¸¶Ô×ۺϱäÁ¿À´·´Ó³Á½×éÑù±¾Ö®¼äµÄÏßÐÔÏà¹ØÐÔ¡£ÓÉÓÚµäÐÍÏà¹Ø·ÖÎöÄ£ÐͲ»ÄÜ׼ȷÃèÊöÁ½×é±äÁ¿Ö®¼äµÄ¹Øϵ£¬ÎªÁ˸ü¼Ó׼ȷ£¬½¨Á¢Á˶àÔª»Ø¹éÄ£ÐÍ£¬½ø¶ø¾«È·µÃ³öÄð¾ÆÆÏÌѺÍÆÏÌѾƵÄÀí»¯Ö¸±ê¶þÕßÖ®¼äµÄ¹Øϵ¡£ 4.4ÎÊÌâËĵķÖÎö
3
Õë¶ÔÎÊÌâËÄ£¬ÈôÒª·ÖÎöÄð¾ÆÆÏÌѺÍÆÏÌѾƵÄÀí»¯Ö¸±ê¶ÔÆÏÌѾÆÖÊÁ¿µÄÓ°Ï죬ÔòÐèÏÈÇóµÃËüÃÇÖ®¼äµÄÏà¹ØÐÔ£¨ÎÊÌâÈýÒѾµÃ³ö£©¡£»ÒɫϵͳÀíÂÛ[1]Ìá³öÁ˶Ը÷×Óϵͳ(»òÒòËØ)Ö®¼äµÄÊýÖµ¹Øϵ¡£¹Ê±¾ÌâÔËÓûÒÉ«¹ØÁª¶È·ÖÎöÄ£ÐͶÔϵͳ¶þÕߵĹØϵ½øÐжÈÁ¿¡£²¢ÔËÓÃÆä½áÂÛ·ÖÎöÆÏÌѺÍÆÏÌѾƵÄÀí»¯Ö¸±ê¶ÔÆÏÌѾƵÄÖÊÁ¿µÄÓ°Ïì¡£
5Ä£Ð͵Ľ¨Á¢ÓëÇó½â
5.1Ä£ÐÍÒ»µÄ½¨Á¢ÓëÇó½â 5.1.1Ä£ÐÍÒ»µÄ½¨Á¢
ÔÚ´¦ÀíµÚÒ»×é¡¢µÚ¶þ×éÆÀ¾ÆԱƷºìÆÏÌѾÆÆÀ·Öʱ£¬Ê×ÏÈ£¬¼ÙÉèµÚÒ»×飬µÚ¶þ×éÎÞ²îÒ죬¼´Ô¼ÙÉèA0:x1?x2£¬ÄÇô¶ÔÓ¦µÄ±¸Ôñ¼ÙÉèÊÇ£º
A0:x1?x2.
´¦Àíƽ¾ùÊýt²âÑ鹫ʽ£ºÈçx1,x2ºÍSS1,SS2·Ö±ðÊǾùÖµºÍÀë¾ù²îƽ·½ºÍ£¬n1,n2Ϊ´¦ÀíµÄÖظ´´ÎÊý£¬Ôò
t=x1-x2/Sx1-x2 £¨ 1£©×ÔÓÉ¶È df=n1+n2-2
ÕâÀïSx1-x2Ϊx1?x2µÄ±ê×¼Îó²î£¬Æä¼ÆË㹫ʽΪ£º
Sx1-x2?(n1?n2)(SS1?SS2) n1n2(n1?n2?2)µ±´¦ÀíÖظ´´ÎÊýÏàͬʱ¼´n1?n2?nʱ£¬Sx1-x2µÄ¼ÆËã¿É¼ò»¯Îª
Sx1-x2?(n1?n2) (SS1?SS2) £¨2£©n1n2(n1?n2?2)Òòn1?n2£¬¹Ê´¦Àí¾ùÊý²î±ê×¼Îó²îΪ£º
Sx1-x2?(SS1?SS2) £¨3£©[n(n?1)]ÔÙ¼ÆËãͳ¼ÆÁ¿t=x1-x2/Sx1-x2£¬×ÔÓɶÈdf=n1+n2-2 5.1.2Ä£ÐÍÒ»µÄÇó½â
¾²é±íµÃÖª£ºtÁÙ½çÖµ±íΪt0.05(18?£¬t0.01(18)?2.878¡£Òòt?t0.01(18¹Ê))2.101p?0.01¾Ü¾øA0£¬¼´ÔÚp?0.01µÄˮƽÉÏÁ½×éÆÀ¾ÆÔ±µÄÆÀ¼Û½á¹ûÎÞÏÔÖøÐÔ²îÒì¡£
ÔÚ½âÊͽá¹ûʱ£¬¸ù¾ÝpÖµ´óСֱ½Ó½øÐÐͳ¼Æ£¬Èçp?0.05£¬±íʾ²îÒìÏÔÖø£¬Èç¹û
4