完整word版,七年级数学下册知识点总结北师大版,推荐文档 下载本文

(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。 6、平行公理的推论: ab如果两条直线都与第三条直线平行,那么这两条直线也互相平行 c 如右图所示,∵b∥a,c∥a

∴b∥c

注意符号语言书写,前提条件是两直线都平行于第三条直线,才会有结论:这两条直线都平行。 7、用尺规作角(利用尺规作图比较角的大小)

尺规作图:在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。 尺规作图是最基本、最常见的作图方法,通常叫基本作图。 即:1、作一条线段等于已知线段。2、作一个角等于已知角 如上如图所示,求作一个角等于已知角∠AOB.作法: O’A’;

圆心,以任意长为半径作弧,交OA于点C,交OB于点D; (3)以O’为圆心,以OC为半径作弧,交O′B′于点D′; (4)以点D′为圆心,以CD为半径作弧,交前面的弧于点C′; (5)过C′作射线O′A′.∠A′O′B′就是所求作的角.

第三章 变量之间的关系

1、变量、自变量、因变量、常量

变量:在某一变化过程中,不断变化的量叫做变量。

自变量、因变量:如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。 注意:变量:在某一过程中发生变化的量,其中包括自变量与因变量。自变量是最初变动的量,它在研究对象反应形式、特征、目的上是独立的;因变量是由于自变量变动而引起变动的量,它“依赖于”自变量的改变。 常量:一个变化过程中数值始终保持不变的量叫做常量.

2、函数的三种表示方法:

(1)列表法(用表格)上自下因

采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。 (2)解析法(关系式)后自前因

关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值 (3)图像法(用图象)横自纵因

对于在某一变化过程中的两个变量,把自变量x与因变量y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出这些点,这些点所组成的图形就是它们的图象(这个图象就叫做平面直角坐标系)。它是我们所表示两个变量之间关系的另一种方法,它的显著特点是非常直观。不足之处是所画的图象是近似的、局部的,通过观察或由图象所确定的因变量的值往往是不准确的。表示的步骤是:①列表:列表给出自变量与因变量的一些特殊的对应值。一般给出的数越多,画出的图象越精确。②描点:在用图象表示变量之间的关系时,通常用水平方向的数轴(横轴或x轴)上的点来表示自变量,用竖直方向的数轴(纵轴或y轴)上的点来表示因变量。③连线: 按照自变量从小到大的顺序,用平滑的曲线把所描的各点连结起来。

3、理解图像:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点 4、事物变化趋势的描述

对事物变化趋势的描述一般有两种:

(1)作射线(2)以O为

- 5 -

(1)随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));

(2)随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).

注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等. 5、估计(或者估算)

对事物的估计(或者估算)有三种:

1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;

2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值; 3.利用关系式:首先求出关系式,然后直接代入求值即可.

- 6 -

优缺点比较。 优 点 缺 点 备 注 只能列出部分自变量与因变量的对对于表中自变量的每一个值可以不应值,难以反映变量间的变化全貌,通常自变量表示在表格的上方,因列表法 通过计算,直接把因变量的值找到,而且从表中看不出变量间的对应规变量表示在表格的下方 查询时很方便 律 解析法 简明扼要,规范准确 有些变量之间的关系很难或不能用通常自变量表示在式子的右边,因关系式表示,求对应值也需要逐个变量表示在式子的左边 计算,比较麻烦 形象直观,可以很形象地反映事物变图象是近似的,局部的,观察或由图通常自变量用水平方向的数轴(横化的全过程,变化的趋势和某些性质图象法 象确定的因变量的值往往是不准确轴)上的点来表示,因变量用竖直(因变量的增减性,点的对称,最大值的 方向的数轴(纵轴)上的点来表示

或最小值)等 第四章 三角形

一、三角形及其有关概念

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。 2、三角形的表示:三角形用符号“?”表示,顶点是A、B、C的三角形记作“?ABC”,读作“三角形ABC”。 3、三角形的三边关系:

(1)三角形的两边之和大于第三边。(2)三角形的两边之差小于第三边。(三角形的第三边大于两边之差小于两边之和)(3)作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。③证明线段不等关系。

4、三角形的内角的关系:

(1)三角形三个内角和等于180°(2)直角三角形的两个锐角互余。

5、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。四边形具有不稳定性。 6、三角形的分类: (1)三角形按边分类: 不等边三角形

三角形 底和腰不相等的等腰三角形 等腰三角形

等边三角形 (2)三角形按角分类:

直角三角形(有一个角为直角的三角形)

三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形

钝角三角形(有一个角为钝角的三角形)

- 7 -

把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。 7、三角形的三种重要线段: (1)三角形的角平分线: 定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。 性质:三角形的三条角平分线交于一点(内心)。交点在三角形的内部。 (2)三角形的中线:

定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。 性质:三角形的三条中线交于一点(重心),交点在三角形的内部。 (3)三角形的高线:

定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

性质:三角形的三条高所在的直线交于一点(垂心)。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部; 中线 角平分线 高线 平分对边 平分内角 垂直于对边(或其延长线) 区别 三条中线交于三角形内部 三条角平分线交于三角表内部 锐角三角形:三条高线都在三角形内部 直角三角形:其中两条恰好是直角边 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 相同 二、图形的全等

全等图形:定义:能够完全重合的两个图形叫做全等图形。性质:全等图形的形状和大小都相同。 全等三角形

1、全等三角形及有关概念:

能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。 2、全等三角形的表示:

全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。 注意:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。 3、全等三角形的性质:全等三角形的对应边相等,对应角相等。 4、三角形全等的判定:

(1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

(2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)

(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”) (4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) 直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有“HL”定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形 ??找夹角(SAS)??5.证题的思路: ?已知两边?找直角(HL)?找第三边(SSS)?注意:①判定两个三角形全等必须有一组边对应相等; ???②全等三角形面积相等. ?若边为角的对边,则找任意角(AAS)???找已知角的另一边(SAS)? ??已知一边一角????边为角的邻边?找已知边的对角(AAS)

?找夹已知边的另一角(ASA)???? ?? ?

- 8 -

?找两角的夹边(ASA)?已知两角???找任意一边(AAS)?