中考函数综合测试卷(一) 下载本文

向上. ∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上, ∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”. ∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4. (2)∵y1的图象经过点A(1,1), ∴2×12﹣4×m×1+2m2+1=1. 整理得:m2﹣2m+1=0. 解得:m1=m2=1. ∴y1=2x2﹣4x+3 =2(x﹣1)2+1. ∴y1+y2=2x2﹣4x+3+ax2+bx+5 =(a+2)x2+(b﹣4)x+8 ∵y1+y2与y1为“同簇二次函数”, ∴y1+y2=(a+2)(x﹣1)2+1 =(a+2)x2﹣2(a+2)x+(a+2)+1. 其中a+2>0,?2010-2015 菁优网

即a>﹣2. ∴. 解得:. ∴函数y2的表达式为:y2=5x2﹣10x+5. ∴y2=5x2﹣10x+5 =5(x﹣1)2. ∴函数y2的图象的对称轴为x=1. ∵5>0, ∴函数y2的图象开口向上. ①当0≤x≤1时, ∵函数y2的图象开口向上, ∴y2随x的增大而减小. ∴当x=0时,y2取最大值, 最大值为5(0﹣1)2=5. ②当1<x≤3时, ∵函数y2的图象开口向上, ∴y2随x的增大而增大. ∴当x=3时,y2取最大值, 最大值为5(3﹣1)2=20. 综上所述:当0≤x≤3时,y2的最大值为20. 点评: 本题考查了求二次函数表达式以及二次函数一

?2010-2015 菁优网

般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键. 20.(8分)(2014?武汉)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表: 50≤x≤90 时间x(天) 1≤x<50 x+40 90 售价(元/件) 每天销量(件) 200﹣2x 已知该商品的进价为每件30元,设销售该商品的每天利润为y元. (1)求出y与x的函数关系式;

(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?

(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果. 考点: 二次函数的应用. 专题: 销售问题. 分析: (1)根据单价乘以数量,可得利润,可得答案; (2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案; (3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答 ?2010-2015 菁优网

案. 解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000, 当50≤x≤90时, y=(200﹣2x)(90﹣30)=﹣120x+12000, 综上所述:y=; (2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45, 当x=45时,y最大=﹣2×452+180×45+2000=6050, 当50≤x≤90时,y随x的增大而减小, 当x=50时,y最大=6000, 综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元; (3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解?2010-2015 菁优网 解答: