2012年考研数学1模拟试题及答案 下载本文

1?y1?x2 y?'arcsixn??1?xyy2?arcsxin1arcxsin

先解方程y'??1?xarcsinx2 即

dyy??1?xdx2 arcsxin lny??ln(arcxsi?nC )故有y?C(x)arcsinx

C(x)arcsinx'带入原微分方程得到?1arcsinx

得到C(x)?x?c 则微分方程的通解为:y??1x?carcsinx

又因为该曲线过点?1?,0?,即y()?0

2?2?12带入微分方程的通解,可解出c??x?1

故曲线方程为y??2

arcsinx(18)求幂级数?n?1n?1n2x的收敛域及和函数

n解:因为an??2n?1n?2,而liman?1ann,且x??1时,级数均发散,所以级数的以收敛域为(?1,1),

n???n?1n?1n?x?n?n?1nx?n?n?11nx0x?x(?x0??n?1nxn?1dx)???(?0x?1nx)?dx

nn?1?x(11?xx2)???11?xdx

?(1?x)?ln(1?x),x?(?1,1)

(19)设函数f(x)连续且恒大于零,

??? F(t)??(t)f(x?y?z)dv222??,G(t)?D(t)f(x?y)d?22??D(t)f(x?y)d?22?t,

f(x)dx2?1其中?(t)?{(x,y,z)x2?y2?z2?t2},D(t)?{(x,y)x2?y2?t2}.

(1) 讨论F(t)在区间(0,??)内的单调性. (2)证明当t?0时,F(t)?解:(1)因为

2G(t).

? F(t)??2?0d????02?d??f(r)rsin?dr0t220d??t?2?f(r)rdr0t220f(r)rdr2?,

t,

0f(r)rdr2 F?(t)?2tf(t)?f(r)r(t?r)dr0t2t2[?f(r)rdr]022所以在(0,??)上F?(t)?0,故F(t) 在(0,??)内单调增加.

(2) 因

? G(t)???t0tf(r)rdr2,

f(r)dr2G(t)?0,即

20要证明t>0时F(t)?

2?G(t),只需证明t>0时,F(t)?t2t22??t0f(r)rdr?f(r)dr?[?f(r)rdr]?0.

0022令 g(t)??t0f(r)rdr?f(r)dr?[?f(r)rdr],

002t22022t2t22则 g?(t)?f(t)?f(r)(t?r)dr?0,故g(t)在(0,??)内单调增加.

因为g(t)在t=0处连续,所以当t>0时,有g(t)>g(0).

又g(0)=0, 故当t>0时,g(t)>0,

2因此,当t>0时,F(t)?G(t).

??2?(20)假设A?0???111a13c?1?2??0????1???1,b?1,????. 如果?是方程组Ax?b的一个解, 试求Ax?b的通解. ????1?1?0?????????1?

?1??【解】:将????1???1?代入Ax?b, 得到1?a?c?1?0,a?c.

???1???2112?0????2112?0???0131?1????0131?1? ??1aa1?0?????0a?12a?120?0???i)、 a?c?12 ??2112?0???2112?0??20?21??0131?1????11?0131?1?????0131???1221?0?????0000?0????0000?于是 r(A)?r(A)?2, 基础解系所含解向量个数为: 4?r(A)?2. 齐次方程: ?2x1?2x?3?x4?0,

?x2?3x3?x4?0令 x3?1,x4?0,解得x2??3,x1?1, 解向量为: (1,?3,1,0)T 令 x3?0,x4?2,解得x2??2,x1??1, 解向量为: (1,?2,0,2)T?1??1???1???所以通解为: ??1???k?3???2?1???k2???1??1??0? ??1????0????2??ii)、a?c?12 ?2112?0??112?0???2??0131?1????0131?1? ??1aa1?0???1??0a?2a?120?0????20?21??1????0131?1?? ??00?2?1??1??于是 r(A)?r(A)?3, 基础解系所含解向量个数为:4?r(A)?1.

?1?1??0??

??2x1?2x3?x4?0? 齐次方程: ?x2?3x3?x4?0,

?1?(1?a)x3?(?a)x4?0?2令 x4?2,解得x3??1,x2?1,x1??2, 解向量为: (?2,1,?1,2)T ?1???2??????11? 所以通解为: ???k??1???1??????1??2??3?(21)设矩阵A?2???22322??0??2,P?1???3???01000??1,B?P?1A*P,求B?2E的特征值与特征向量,其中A*?1??为A的伴随矩阵,E为3阶单位矩阵.

解: 方法一:

经计算可得

?5? A*??2????2?25?2?2??0???1?2, P?1???5???005?20???4. ?3??100?1??0, ?1???7? B?P?1A*P=?2????2从而

?9? B?2E??2????207?20???4, ?5????9?E?(B?2E)?22004?(??9)(??3),

2??72??5故B?2E的特征值为?1??2?9,?3?3.

当?1??2?9时,解(9E?A)x?0,得线性无关的特征向量为 ??1???2????? ?1?1, ?2?0,

???????0???1??