?y1?x1?a1x2?y?x2?a2x3?2? ?...........?y?xn?1?an?1xn?n?1??yn?xn?anx1写成矩阵形式为
?1?y1?????0y2???0??????????yn?1??0?y???n???ana110?000a21?00...............000?100???x1?0??x?2?0??? ????????xn?1?an?1??x???n??1?22?...?yn 此时原二次型f(x1,x2,...,xn)变形为f(x1,x2,...,xn)?y12?y2因此上式为正定阵,要求原二次型正定的充要条件为替换阵是可逆的
即
100?0?0ana110?000a21?00...............000?10000?an?11?1?(?1)n?1a1a2...an
n即a1a2...an?(?1)时,原二次型为正定二次型.
(22)(本题满分11分)设随机变量X和Y的联合分布是正方形G???x,y?:1?x?3,1?y?3分布。试求随机变量U?X?Y的概率密度p(u)
?1?,1?x,y?3解:X和Y的联合概率密度为f(x,y)??4
?0,其它??的均匀
设U的分布函数为F(u),则F(u)?P?U?u??P?X?Y?u? 由于0?X?Y?2,可知当u?0时,F(u)?0;当u?2时,F(u)?1 当0?u?2时,F(u)?P?U?u??P?X?Y?u??1414(2?u)
2???u?x?y?udxdy?1?
?0,u?0u??1?,0?u?21??可知F(u)??1?(2?u)2,0?u?2,进而有p(u)?? 24??0,其它???1,u?2(23)(本题满分10分)设总体X的概率密度为:
?6x(??x),?f(x;?)???3?0,?0?x??其他
其中?是未知参数,X1,X2,...,Xn是来自总体X的简单随机样本,
(1)求?的矩估计量?;
?). (2)求D(??解:(1)EX??????xf(x)dx???0x6x?3(??x)dx?6?3??036??x23(?x?x)dx?3???3???0x4?40??????,所以X?,故?22???2X为?的矩估计. ?(2)E?X2???????xf(x)dx?2??0x26x?23(??x)dx?6?3??046?x34(?x?x)dx?3?????4???0x5?50?3?2??,?10?DX?EX?(EX)?223?2,?()?10220n??2?)?D2XD(????1?4D??n?i?14?Xi??2?nn?DXi?1i?4n2?n??220??25n.
数一模考四答案
一、选择题
(1)A (2)C (3)D (4)C (5)C (6)C (7)A (8)C 二、填空题
?x(9)sec2 (10)y?cxe(x?0) (11)x?3y?z?1?0
22?a12?(12)? (13)A??a1a2?aa?13a1a2a22a2a3a1a3?3?a2a3? (14)p?
72a3??三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
(15)(本题满分10分)设0?x1?1,xn?1?证明:由xn?1?22xn?2?xnimxn存在,并求其值 ?,证明ln??xn?2?xn??2?(xn?1)?1?1知{xn}有界,
2又由xn?1?xn?xn?2?xn??xn?2xn(1?xn)?0知{xn}单调递增 故{xn}收敛,即limxn存在
n??设limxn?l,xn?1?n??xn?2?xn?两边取极限得l?l(2?l),解之得l?0或l?1,又{xn}单调递增,
故l?0不合题意,舍去,因此limxn?1
n??(16)(本题满分10分)设f?u,v?具有二阶连续偏导数,且满足
22?f?u22??f?v22?1,
?g?g1??? g?x,y??f?xy,x2?y2?,求 22?x?y2????
1 解:u?xy,v??x2?y2?
2
?g?x?y?f?u?x?f?v,
?g?y?x?f?u?y?f?v
?g?x22?y??f??????u??x??f?v?x??f??????v??x
??f??????u??x2??f?u?u22?x2??f?v?u?v?x22;??f??????v??x22??f?u?v?u?x2??f?v?v22?x
故:
2?g?x2?y?2?f?u2?2xy2?f?u?v?y2?x2?f?v?2??f?v,
?g?y2?x2?f?u2?2xy?f?u?v?f?v2?f?v
所以:
?g?x22??g?y22?x?y?22??f?u22?x?y?22??f?v22?x?y
22(17)(本题满分10分)设f?x?在?a,b?上连续,在?a,b?内可导?0?a?b?,证明:存在?,???a,b?,使得 f'????f'???ab?
2
证明:由题设f?x?在?a,b?上满足拉格朗日中值定理的条件,故存在???a,b?,使
f?b??f?a?b?a?f'???.
又f?x?,
1x在?a,b?上满足柯西中值定理的条件,故存在???a,b?,使
f?b??f?a?1bf'?1a?f'???1.
??2合并上两式可得f'???????ab2?.
(18)(本题满分10分)f(x)?pe?x?x2?x ,若对于一切的x?0,恒有f(x)?1,问常数p最小应
取什么值? 解:由f(x)?pe?x?x?x?1,(x?0),得pe2?x??x?x?1
2?x2令f1(x)?pe,f2(x)??x?x?1
由f2max(x)?f2()?,知f1()?pe224151?12?54,得p?541e2
?x所以f1(x)?pe在(0,??)上是是单调递减的
设f1(x),f2(x)相切于点(x0,pe?x?x0)?(x0,?x0?x0?1)
2又f1?(x)??pe,f2?(x)??2x?1 所以f1?(x0)?f2?(x0),即?pe联立pe?x02?x0??2x0?1,
??x0?x0?1,可得x0?1,或x0??2(舍去)
x0?1时,可得p?e
所以p的最小值为e
ln(x1)?1?(19)(本题满分10分)将f(x)?2xarctanx?2展成x的幂极数
解:f?(x)?2arctanx?2x?12?2xx?1n2n2?2xx?12?2arctanx
f??(x)??2?(?1)xn?0,x?(?1,1)