汽轮机原理(附课后题答案). 下载本文

汽轮机原理

第一章 汽轮机的热力特性思考题答案

1. 什么是汽轮机的级?汽轮机的级可分为哪几类?各有何特点?

解答:一列喷嘴叶栅和其后面相邻的一列动叶栅构成的基本作功单元称为汽轮机的级,它是蒸汽进行能量转换的基本单元。

根据蒸汽在汽轮机内能量转换的特点,可将汽轮机的级分为纯冲动级、反动级、带反动度的冲动级和复速级等几种。 各类级的特点:

(1)纯冲动级:蒸汽只在喷嘴叶栅中进行膨胀,而在动叶栅中蒸汽不膨胀。它仅利用冲击力来作功。在这种级中:p1 = p2;Dhb =0;Ωm=0。

(2)反动级:蒸汽的膨胀一半在喷嘴中进行,一半在动叶中进行。它的动叶栅中不仅存在冲击力,蒸汽在动叶中进行膨胀还产生较大的反击力作功。反动级的流动效率高于纯冲动级,但作功能力较小。在这种级中:p1 > p2;Dhn≈Dhb≈0.5Dht;Ωm=0.5。

(3)带反动度的冲动级:蒸汽的膨胀大部分在喷嘴叶栅中进行,只有一小部分在动叶栅中进行。这种级兼有冲动级和反动级的特征,它的流动效率高于纯冲动级,作功能力高于反动级。在这种级中:p1 > p2;Dhn >Dhb >0;Ωm=0.05~0.35。

(4)复速级:复速级有两列动叶,现代的复速级都带有一定的反动度,即蒸汽除了在喷嘴中进行膨胀外,在两列动叶和导叶中也进行适当的膨胀。由于复速级采用了两列动叶栅,其作功能力要比单列冲动级大。

2. 什么是冲击原理和反击原理?在什么情况下,动叶栅受反击力作用?

解答:冲击原理:指当运动的流体受到物体阻碍时,对物体产生的冲击力,推动物体运动的作功原理。流体质量越大、受阻前后的速度矢量变化越大,则冲击力越大,所作的机械功愈大。反击原理:指当原来静止的或运动速度较小的气体,在膨胀加速时所产生的一个与流动方向相反的作用力,称为反击力,推动物体运动的作功原理。流道前后压差越大,膨胀加速越明显,则反击力越大,它所作的机械功愈大。

当动叶流道为渐缩形,且动叶流道前后存在一定的压差时,动叶栅受反击力作用。 3. 说明冲击式汽轮机级的工作原理和级内能量转换过程及特点。

解答:蒸汽在汽轮机级内的能量转换过程,是先将蒸汽的热能在其喷嘴叶栅中转换为蒸汽所具有的动能,然后再将蒸汽的动能在动叶栅中转换为轴所输出的机械功。具有一定温度和压力的蒸汽先在固定

不动的喷嘴流道中进行膨胀加速,蒸汽的压力、温度降低,速度增加,将蒸汽所携带的部分热能转变为蒸汽的动能。从喷嘴叶栅喷出的高速汽流,以一定的方向进入装在叶轮上的动叶栅,在动叶流道中继续膨胀,改变汽流速度的方向和大小,对动叶栅产生作用力,推动叶轮旋转作功,通过汽轮机轴对外输出机械功,完成动能到机械功的转换。由上述可知,汽轮机中的能量转换经历了两个阶段:第一阶段是在喷嘴叶栅和动叶栅中将蒸汽所携带的热能转变为蒸汽所具有的动能,第二阶段是在动叶栅中将蒸汽的动能转变为推动叶轮旋转机械功,通过汽轮机轴对外输出。

4. 什么是最佳速度比?纯冲动级、反动级和纯冲动式复速级的最佳速度比的值是多少?

解答:轮周速度与喷嘴出口汽流速度的比值,称为速度比。级效率最高时,所对应的速度比称为最佳速度比。

纯冲动级的最佳速度比约为0.4~0.44;反动级的最佳速度比约为0.65~0.75;纯冲动式复速级的最佳速度比约为0.21~0.22。

5. 汽轮机的能量损失有哪几类?各有何特点?

解答:汽轮机内的能量损失可分为两类,一类是汽轮机的内部损失,一类是汽轮机的外部损失。汽轮机的内部损失主要是蒸汽在其通流部分流动和进行能量转换时,产生的能量损失,可以在焓熵图中表示出来。汽轮机的外部损失是由于机械摩擦及对外漏汽而形成的能量损失,无法在焓熵图中表示。 6. 汽轮机的级内损失一般包括哪几项?造成这些损失的原因是什么?

解答:汽轮机的级内损失一般包括:喷嘴损失;动叶损失;余速损失;叶高损失;扇形损失;叶轮摩擦损失;部分进汽损失;漏汽损失;湿汽损失。 造成这些损失的原因:

(1)喷嘴损失:蒸汽在喷嘴叶栅内流动时,汽流与流道壁面之间、汽流各部分之间存在碰撞和摩擦,产生的损失。

(2)动叶损失:因蒸汽在动叶流道内流动时,因摩擦而产生损失。

(3)余速损失:当蒸汽离开动叶栅时,仍具有一定的绝对速度,动叶栅的排汽带走一部分动能,称为余速损失。

(4)叶高损失:由于叶栅流道存在上下两个端面,当蒸汽流动时,在端面附面层内产生摩擦损失,使其中流速降低。其次在端面附面层内,凹弧和背弧之间的压差大于弯曲流道造成的离心力,产生由凹弧向背弧的二次流动,其流动方向与主流垂直,进一步加大附面层内的摩擦损失。

(5)扇形损失:汽轮机的叶栅安装在叶轮外圆周上,为环形叶栅。当叶片为直叶片时,其通道截面沿叶高变化,叶片越高,变化越大。另外,由于喷嘴出口汽流切向分速的离心作用,将汽流向叶栅顶部

挤压,使喷嘴出口蒸汽压力沿叶高逐渐升高。而按一元流动理论进行设计时,所有参数的选取,只能保证平均直径截面处为最佳值,而沿叶片高度其它截面的参数,由于偏离最佳值将引起附加损失,统称为扇形损失。

(6)叶轮摩擦损失:叶轮在高速旋转时,轮面与其两侧的蒸汽发生摩擦,为了克服摩擦阻力将损耗一部分轮周功。又由于蒸汽具有粘性,紧贴着叶轮的蒸汽将随叶轮一起转动,并受离心力的作用产生向外的径向流动,而周围的蒸汽将流过来填补产生的空隙,从而在叶轮的两侧形成涡流运动。为克服摩擦阻力和涡流所消耗的能量称为叶轮摩擦损失。

(7)部分进汽损失:它由鼓风损失和斥汽损失两部分组成。在没有布置喷嘴叶栅的弧段处,蒸汽对动叶栅不产生推动力,而需动叶栅带动蒸汽旋转,从而损耗一部分能量;另外动叶两侧面也与弧段内的呆滞蒸汽产生摩擦损失,这些损失称为鼓风损失。当不进汽的动叶流道进入布置喷嘴叶栅的弧段时,由喷嘴叶栅喷出的高速汽流要推动残存在动叶流道内的呆滞汽体,将损耗一部分动能。此外,由于叶轮高速旋转和压力差的作用,在喷嘴组出口末端的轴向间隙会产生漏汽,而在喷嘴组出口起始端将出现吸汽现象,使间隙中的低速蒸汽进入动叶流道,扰乱主流,形成损失,这些损失称为斥汽损失。 (8)漏汽损失:汽轮机的级由静止部分和转动部分组成,动静部分之间必须留有间隙,而在间隙的前后存在有一定的压差时,会产生漏汽,使参加作功的蒸汽量减少,造成损失,这部分能量损失称为漏汽损失。

(9)湿汽损失:在湿蒸汽区工作的级,将产生湿汽损失。其原因是:湿蒸汽中的小水滴,因其质量比蒸汽的质量大,所获得的速度比蒸汽的速度小,故当蒸汽带动水滴运动时,造成两者之间的碰撞和摩擦,损耗一部分蒸汽动能;在湿蒸汽进入动叶栅时,由于水滴的运动速度较小,在相同的圆周速度下,水滴进入动叶的方向角与动叶栅进口几何角相差很大,使水滴撞击在动叶片的背弧上,对动叶栅产生制动作用,阻止叶轮的旋转,为克服水滴的制动作用力,将损耗一部分轮周功;当水滴撞击在动叶片的背弧上时,水滴就四处飞溅,扰乱主流,进一步加大水滴与蒸汽之间的摩擦,又损耗一部分蒸汽动能。以上这些损失称为湿汽损失。

7. 什么是汽轮机的相对内效率?什么是级的轮周效率?影响级的轮周效率的因素有哪些? 解答:蒸汽在汽轮机内的有效焓降与其在汽轮机内的理想焓降的比值称为汽轮机的相对内效率。 一公斤蒸汽在级内转换的轮周功和其参与能量转换的理想能量之比称为轮周效率。

影响轮周效率的主要因素是速度系数φ和ψ,以及余速损失系数,其中余速损失系数的变化范围最大。余速损失的大小取决于动叶出口绝对速度。余速损失和余速损失系数最小时,级具有最高的轮周效率。 8. 什么叫余速利用?余速在什么情况下可被全部利用?

解答:蒸汽从上一级动叶栅流出所携带的动能,进入下一级参加能量转换,称为余速利用。如果相邻两级的直径相近,均为全周进汽,级间无回热抽汽,且在下一级进口又无撞击损失,则上一级的余速就可全部被下一级利用,否则只能部分被利用。当上一级的余速被利用的份额较小时,视为余速不能被利用。

9. 什么是多级汽轮机的重热现象?由于多级汽轮机内存在重热现象,12. 可以从损失中回收一部分可用能量,13. 是否可以说重热系数愈大愈好?

解答:蒸汽在多级汽轮机内进行能量转换时,所有的内部损失都因为摩擦而转变为热量,在绝热条件下被蒸汽吸收,使各级的排汽焓和排汽温度相应增加,下一级的热力过程线向右偏移。此时在下一级的前后蒸汽压力不变的条件下,其级内蒸汽的理想焓降相应增加,这种现象称重热现象。

重热是多级汽轮机所特有的现象。重热现象实质上是从损失中回收部分能量,而在后面各级内继续进行能量转换,故其可以提高多级汽轮机的效率。因汽轮机内部损失愈大、级数愈多,重热系数愈大,故不能说重热系数愈大愈好。

10. 渐缩喷嘴和缩放喷嘴的变工况特性有何差别?

解答:缩放喷嘴与渐缩喷嘴的本质区别,是它的临界截面与出口截面不同,且缩放喷嘴设计工况下背压低于临界压力、出口汽流速度大于音速,而在最小截面处理想速度等于音速。缩放喷嘴的变工况与渐缩喷嘴的差别是:当出口压力大于设计工况下背压时,在喷嘴出口截面或喷嘴渐扩部分将产生冲波,速度系数大大降低。另外,对应临界流量的压力比小于临界压力比。 11. 为什么可以利用研究喷嘴变工况特性的结果分析动叶栅变工况特性?

解答:动叶栅为渐缩流道,压力比都用滞止压力比,渐缩喷嘴蒸汽参数与流量的特性完全可适用于动叶栅,所不同的是研究动叶栅变工况时,应使用相对速度w。

12. 弗留盖尔公式中各符号代表什么意义?该公式在什么条件下可以简化,简化为什么形式? 解答:弗留盖尔公式为:

式中 p0、pz、T0、G0 ——工况变化前级组前后蒸汽压力、级组前蒸汽绝对温度和蒸汽流量; p01、pz1、T01、G01——工况变化后级组前后蒸汽压力、级组前蒸汽绝对温度和蒸汽流量。 当pz<0.1p0时,pz的变化对级组蒸汽流量影响很小;级组中有一级叶栅在工况变化前后均为临界时,pz的变化对级组蒸汽流量不产生影响,故上式可简化为:

当级组前蒸汽温度变化不大时,可进一步简化为: 或