压力容器基本知识 - 图文 下载本文

沸腾钢不允许用于制造压力容器的受压元件。 4)Q235钢板:在图样的材料明细表中不得只标Q235,应根据设计须要在尾部带上“-A或-B或-C”,Q235钢板的具体数据见下表: Q235热轧厚钢板(板厚≤16mm)的化学成分和力学性能表 牌号 等级 化学成分 % C Mn Si ≤ Q235-A Q235-B Q235-C 0.14-0.22 0.3-0.65 0.12-0.20 0.3-0.7 ≤O.18 0.35-0.6 0.3 S ≤ 0.05 0.045 0.04 0.04 P ≤ 0.045 235 力学性能MPa бs ≥ бb ≥ 375 -500 20 0 冲击性能 温度 0冲击功J 27 C 注:Q235-A未提供冲击功。 4.2 D类压力容器受压元件用钢板 在D类压力容器中,主要使用GB150的表4-1“钢板许用应力”列入的下列钢板: 1)碳素钢板:使用Q235-B 、Q235-C 和 20R钢板。 Q235-B钢板(GB912和GB3274)的适用范围:容器设计压力 P≤1.6MPa; 钢板使用温度为0~3500C;用于壳体时,钢板厚度不大于20mm;不得用于毒性为高度或极度危害介质的压力容器。在表4-1中所列许用应力值,已乘质量系数0.9。 Q235-C钢板(GB912和GB3274)的适用范围:容器设计压力 P≤2.5MPa,钢板使用温度为0~4000C。用于壳体时,钢板厚度不大于30mm 20R钢板(GB6654)的应用:用作壳体时,适宜厚度不超过30mm;使用温度建议为-19~4750C;为避免增加试验项目,当使用温度低于00C时,建议使用厚度小于25mm;使用温度低于-100C时,建议使用厚度小于12mm。 2)低合金钢板:使用 16MnR(GB6654)和16MnDR(GB3531)钢板 16MnR钢板:常温使用时的厚度不宜超过30mm;使用温度建议为-19~4750C。 使用温度低于00C时,建议使用厚度小于35mm;使用温度低于-100C时,建议使用厚度小于20mm,以避免增加试验项目。 16MnDR钢板:使用的最高温度为3500C,厚度不宜超过35mm。 对于有经验的设计单位,也可选用GB6654中的15MnNbR和,15CrMoR;GB3531 中的15MnNbDR 和09MnNiDR。 3)高合金钢板:经常使用奥氏体不锈钢板(GB4237): 用于清洁美观的压力容器用钢板有:0Cr18Ni9 ; 用于抗氧化性介质腐蚀的不锈钢有:00Cr19Ni10和0Cr18Ni10. 用于抗醋酸介质腐蚀用的不锈钢有:OCr17Ni12Mo2,0Cr18Ni12Mo2Ti 00Cr17Ni14Mo2; 0Cr19Ni13Mo3;00Cr19Ni13Mo3 。 说明:①抗腐蚀原理:铬镍奥氏体不锈钢是指上述钢号经固熔热处理而具有均一的奥氏体钢,这种钢在氧化性介质中具有良好的抗腐蚀性,高的塑性和韧性。这种钢的耐腐蚀的基理通常用钢生成氧化膜的理论来解释,即钢在空气中或在氧化性介质中,其表面氧化,生成緻密的氧化薄膜,它阻止内部进一步氧化,或受介质的侵蚀,这种现象称钝化现象。钝化膜的生成与不锈钢的表面的质量有关,机械损伤破坏的氧化膜会重新生成,但很缓慢,清洁表面后可再度产生氧化膜。钢表面的残余氧化皮、砂眼、起鳞,氧化膜难以生成,会造成局部腐蚀。抛光表面、经磨光和酸洗的表面,可加速氧化膜的形成,提高抗腐蚀性。 ②不锈钢晶间腐蚀:晶间腐蚀是钢的晶体边界受到腐蚀的一种破坏形式。这种腐蚀沿着晶界快速传播到金属内部。晶间腐蚀特别危险,因为肉眼不容易发现,由于这种腐蚀的结果,材料的机械强度丧失达到很大的数值。晶间腐蚀的倾向,主要决定于钢的含碳量,其原因是:

0

当钢加热到不太高的温度(600-800C)时,由于富铬的碳化物在晶界上析出,使固溶体晶界上贫铬,结果,晶界未能钝化,使其耐腐蚀性变差,解决的办法是:a)采用钢在1080-110

50C的固溶处理,使碳重新溶入奥氏体固溶体;b)将钢中碳含量降低至≤0.03%;c)加入形成稳定碳化物的元素钛或铌到钢中,加钛量应≥5C%,但含钛的不锈钢的加热温度不应超过

0

1100C,以免碳化钛重新溶入固溶体中,重新产生碳化铬而发生贫铬现象。

4.3 钢管

4.3.1 钢管的标准及许用应力按GB150的表4-3钢管许用应力的规定。

D类压力容器常用的碳素钢和低合金钢钢管牌号有:10 20 20G 16Mn 。 10和20钢管,依据标准为:GB8163-87《输送流体用无缝钢管》;

20G 和 16Mn 钢管,依据标准为:GB6479《化肥设备用高压无缝钢管》。 常用的不锈钢管0Cr18Ni9、 00Cr19Ni10 和0Cr18Ni10Ti依据标准为: GB13296-91《锅炉、热交换器用不锈钢无缝钢管》 GB/T14796-94 《流体输送用不锈钢无缝钢管》

4.3.2 关于不锈钢焊接钢管在压力容器中的使用问题:

在附录A的A4.2中有明确规定。

对奥氏体不锈钢焊接钢管(见A4.2.1)应遵循GB12771-91《流体输送用不锈钢焊接钢管》的规定。具体要求是:壁厚允许偏差为±12.5%;钢管的弯曲度不大于1.55mm/m;逐根进行蜗流或射线(对大直径管)及水压试验合格; 检测标准按JB/T4730-2005.1《承压设备无损检测》中的相关部分,水压试验压力为容器设计压力的2倍,保压时间为10秒,管壁无渗漏现象。

奥氏体不锈钢焊接钢管的使用范围规定如下:容器使用温度定为0Cr18Ni9、 00Cr19Ni10 和0Cr18Ni10Ti等钢号的相应允许使用温度;容器设计压力不大于6.4MPa;管壁厚不大于8mm;不得用于毒性程度为极度危害的介质;焊接接头系数为0.85,即按相同钢号的许用应力乘以0.85的焊接接头系数。 4.4 钢锻件

钢锻件的标准及许用应力按GB150表4-5的规定,钢锻件的标准和常用钢锻件为:

JB4726-2000《压力容器用碳素钢和低合金钢锻件》中的 20、35和16Mn JB4727-2000《低温压力容器碳素钢和低合金钢锻件》中的16MnD

JB4728-2000《压力容器用不锈钢锻件》中的0Cr18Ni9、00Cr19Ni10 和0Cr18Ni10。 4.5焊接材料

压力容器受压元件焊接选用的焊条(焊接材料)的參考原则是:

①满足力学性能的要求,保持等强度,考虑满足冲击韧性和伸长率的要求; ②化学成分相当;

③根据工程重要性、危险性、焊接位置、刚性大小、施焊条件、焊接经验选择焊条;

④考虑经济性和容易获得; 碳钢和低合金钢之间焊接,一般要求所选用的焊材焊成的焊接接头,其强度不低于强度较低的一侧母材标准抗拉强度下限值,而接头的韧性和塑性应不低于强度较高而塑性韧性较差的母材。

首次选用的焊接材料,应按JB4708-2000《钢制压力容器焊接工艺评定》和JB/T4709-2000《钢制压力容器焊接规程》的规定。压力容器用焊条定货时,应按JB/T 4747-2002《压力容器用焊条订货技术条件》。

焊接材料的标准有:

GB/T5117-1995《碳钢焊条》; GB/T5118-1995《低合金钢焊条》; GB/T983-1995《不锈钢焊条》; GB/T984-2001《堆焊焊条》;

GB/T14957-1994《熔化焊用钢丝》; GB/T14958-1994《气体保护焊用钢丝》;

GB/T8110-1995《气体保护电弧焊用碳钢,低合金钢焊丝》 GB4241-84《焊接用不锈钢盘条》; GB4242-84《焊接用不锈钢丝》;

GB4343-84《惰性气体保护焊接用不锈钢棒及钢丝》。 YB/T5091-1993《惰性气体保护焊用不锈钢棒及钢丝》; YB/T5092-1996《焊接用不锈钢丝》;

GB/T5293-1999《埋弧焊用碳素钢焊丝和焊剂》; GB/T12470-1999《埋弧焊用低合金钢焊丝和焊剂》; 4.6 采用国外钢材的要求

采用国外的钢材,应是国外相应压力容器最新标准所允许使用的钢材;其使用范围不应超出该标准的规定,同时也不应超过GB150第4章材料相近钢材的规定。 4.7 一些钢材的代用规定

1)钢材的代用的一般原则是:代用材料应与被代用的钢材具有相同或相近的化学成分、交货状态、检验项目、性能指标和检验率以及尺寸公差和外形质量等。

2)代用图样规定的钢材时,应取得原设计单位的同意。 3)钢板代用:

①GB712-88《船体用结构钢》中的A级钢板,可代用Q235-A(不得作受压元件);B级钢板在钢厂按标准要求进行冲击试验合格后,可代用Q235-C钢板,未作冲击试验的钢板,则只能代用Q235-B钢板;

②GB713-1997《锅炉用碳素钢和低合金钢钢板》中的20g钢板可代用Q235-C钢板。

4)钢管代用:GB3087-82《低中压锅炉用无缝钢管》中的10和20钢管,可代用 GB8163-1999 《输送流体用无缝钢管》中相应的钢管。 4.8 特殊工作环境下的选材

关于介质处于NaOH湿H2S应力腐蚀时的选材问题,可见《容规》126页,关于“压力容器选材与介质”的说明。

5.内压圆筒和内压球体的计算

5.1内压圆筒和内压球体计算的理论基础

1)强度理论:内压容器的破坏有四种强度理论,比较为人们接受的有第一、第三和第四强度理论。

①第一强度理论即最大主应力理论,它认为引起材料断裂破坏的主要因素是最大主应力。亦即不论材料处于何种应力状态,只要最大主应力达到材料单向拉伸断裂时的最大应力值,材料则发生断裂破坏,其当量应力强度为S = б1 。 ②第三强度理论即最大剪应力理论,它认为引起材料屈服破坏的主要因素是最大剪应力。亦即不论材料处于何种应力状态,只要最大剪应力达到材料屈服时的最大剪应力值,材料则发生屈服破坏,其当量应力强度为S = б1-б3 。 ③第四强度理论即最大应变能理论,它认为引起材料屈服破坏的主要因素是最大变形能。亦即不论材料处于何种应力状态,只要其内部积累的变形能达到材料单向拉伸屈服时的应变能,材料即发生屈服破坏,其当量应力强度为:

2)GB150-1998标准中计算公式主要以第一强度理论为基础(结果比较接近)。并采用平面应力状态(忽略第三向应力)。如果考虑第三向的应力,则是第三强度理论。

5.2 内压圆筒计算

1)设计温度下的计算厚度按下式计算:

公式适用范围:Pc≤0.4Ф[σ]t 或 Do/Di≤1.5 式中:δ- 圆筒的计算厚度 mm;

Pc– 计算压力,MPa;

Di – 圆筒内直径,mm;

[σ]t –设计温度下圆筒材料的许用应力,MPa; Ф – 焊接接头系数。 2)公式来源:

用第一强度理论,以圆筒平均直径为基准计算的环向应力,考虑了圆筒内壁上最大主应力与平均拉应力的差值进行了修正,并考虑了纵向焊缝(A类焊接接头)在强度方面相对于母材的削弱。 公式中应力的推导是根据薄膜应力理论。 3) 公式推导:

设直径D筒体受内压力为P的作用,圆筒上的任一小单元上受三个主应力环向应力σ1 、轴向应力σ2和径向应力σ3的作用,求应力时,可通过中心轴线沿纵向将圆筒切成两部分,去除一部分以应力代替,根据力平衡理论,在纵向截面厚度产生内应力σ1,其合力与外部作用的压力作用平衡,设圆筒直径为D,长度为L,厚度为δ,按平衡关系则有:

2 Lδσ1 = P D L σ1 = P D/2δ 沿垂直主轴线的截面将圆筒体切开,在圆形横截面上的应力为σ2,产生平衡的条件为:.πDσ2δ =1/4 πD2 P; σ2= P D/4δ 径向应力σ3= P ,可见σ1=2σ2,并远大于σ3 ,故采用σ1 = P D/2δ,即: δ= P D/2σ1 ,令D=Di+δ, P = pc代入,σ1以Ф[σ]t代入, 则得到 : 。