2018-2019年新乡市小升初数学模拟试题集(10套)附详细答案 下载本文

答案

一、填空题:

1.(1/5)

2.(44)

[1×(1+20%)×(1+20%)-1]÷1×100%=44% 3.(偶数)

在121+122+…+170中共有奇数(170+1-121)÷2=25(个),所以121+122+…+170是25个奇数之和再加上一些偶数,其和为奇数,同理可求出在41+42+…+98中共有奇数29个,其和为奇数,所以奇数减奇数,其差为偶数.

4.(27)

(40+7×2)÷2=27(斤) 5.(19)

淘汰赛每赛一场就要淘汰运动员一名,而且只能淘汰一名.即淘汰掉多少名运动员就恰好进行了多少场比赛.即20名运动员要赛19场.

6.(301246)

设这六位数是301240+a(a是个一位数),则301240+a=27385×11+(5+a),这个数能被11整除,易知a=6.

7.(20)

每个小圆的半径未知,但所有小圆直径加起来正好是大圆的直径。所以所有小圆的周长之和等于大圆周长,即20厘米.

8.(7)

假设小宇做对10题,最终得分10×8=80分,比实际得分41分多80-41=39.这多得的39分,是把其中做错的题换成做对的题而得到的.故做错题39÷(5+8)=3,做对的题10-3=7.

9.(6666÷6+666+6×6×6+6-6÷6-6÷6=1997).

先用算式中前面一些6凑出一个比较接近1997的数,如6666÷6+666=1777,还差220,而6×6×6=216,这样6666÷6+666+6×6×6=1993,需用余下的5个6出现4:6-6÷6-6÷6=4,问题得以解决.

10.(110)

二、解答题

1.(22个)

根据图形特点把图中三角形分类,即一个面积的三角形,还有一类是四个面积的三角形,顶点朝上的有3个,由对称性知:顶点朝下的也有3个,故图中共有三角形个数为16+3+3=22个.

2.(14间,40人) (12+2)÷(3-2)=14(间) 14×2+12=40(人) 3.

4.(4个)

这个问题依据两个事实: (1)除2之外,偶数都是合数;

(2)九个连续自然数中,一定含有5的倍数.以下分两种情况讨论:①九个连续自然数中最小的大于5,这时其中至多有5个奇数,而这5个奇数中一定有一个是5的倍数,即其中质数的个数不超过4个,②九个连续的自然数中最小的数不超过5,有下面几种情况:

1,2,3,4,5,6,7,8,9 2,3,4,5,6,7,8,9,10 3,4,5,6,7,8,9。10,11 4,5,6,7,8,9,10,11,12,

5,6,7,8,9,10,11,12,13

这几种情况中,其中质数个数均不超过4.

综上所述,在九个连续自然数中,至多有4个质数.