东营职业学院东职生活圈 - 图文 下载本文

数的极值与连续概念(对计算不作要求)。会求二元函数的定义域。

(2)理解偏导数、全微分概念,知道全微分存在的必要条件与充分条件。

(3)掌握二元函数的一、二阶偏导数计算方法。 (4)掌握复合函数一阶偏导数的求法。 (5)会求二元函数的全微分。

(6)掌握由方程F(x,y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法。

(7)会求二元函数的无条件极值。 (二)二重积分

(1)理解二重积分的概念、性质及其几何意义。

(2)掌握二重积分在直角坐标系及极坐标系下的计算方法。 六、无穷级数 (一)数项级数

(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。

(2)掌握正项级数的比值数别法。会用正项级数的比较判别法。

(3)掌握几何级数、调和级数与p级数的敛散性。 (4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。

- 41 -

(二)幂级数

(1)了解幂级数的概念,收敛半径,收敛区间。 (2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。

(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。

七、常微分方程 (一)一阶微分方程

(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。

(2)掌握可分离变量方程的解法。 (3)掌握一阶线性方程的解法。 (二)二阶线性微分方程

(1)了解二阶线性微分方程解的结构。

(2)掌握二阶常系数齐次线性微分方程的解法。

- 42 -