.
ͼ1 ÀíÏëµÄÄÚ¡¢Íâ³µÂÖת½Ç¹ØÏµ¼òͼ
Èô×Ô±ä½ÇΪ¦Èo£¬ÔòÒò±ä½Ç¦ÈiµÄÆÚÍûֵΪ:
?i?f(?o)?arccot(cot?0?K/L) £¨2£©
ÏÖÓÐתÏòÌÝÐλú¹¹½öÄܽüËÆÂú×ãÉÏʽ¹ØÏµ¡£ÒÔͼËùʾµÄºóÖÃÌÝÐλú¹¹ÎªÀý£¬
'?ÔÚͼÉÏ×÷¸¨ÖúÓÃÐéÏߣ¬ÀûÓÃÓàÏÒ¶¨Àí¿ÉÍÆµÃתÏòÌÝÐÎËù¸ø³öµÄʵ¼ÊÒò±ä½ÇiΪ
?i'???arcsinsin(???0)K?K??1?2cos(???0)??m?m?2K?2cos??cos(???0)?cos2??m?arccos£¨3£©
K?K??1?2cos(???0)??m?m?2ʽÖУºmΪÌÝÐα۳¤£»¦ÃΪÌÝÐε׽ǡ£
ËùÉè¼ÆµÄתÏòÌÝÐθø³öµÄʵ¼ÊÒò±ä½Ç?i£¬Ó¦¾¡¿ÉÄܽӽüÀíÂÛÉÏµÄÆÚÍûÖµ
'?i¡£ÆäÆ«²îÔÚ×ʹÓõÄÖмäλÖø½½üС½Ç·¶Î§ÄÚÓ¦¾¡Á¿Ð¡£¬ÒÔ¼õÉÙ¸ßËÙÐÐÊ»
ʱÂÖÌ¥µÄÄ¥Ë𣻶øÔÚ²»¾³£Ê¹ÓÃÇÒ³µËٽϵ͵Ä×î´óת½Çʱ£¬¿ÉÊʵ±·Å¿íÒªÇó¡£Òò´Ë£¬ÔÙÒýÈë¼ÓȨÒò×Ó
?£¨£©0??£¬¹¹³ÉÆÀ¼ÛÉè¼ÆÓÅÁÓµÄÄ¿±êº¯ÊýΪf(x)
??ii(?oi)??i(?oi)? f(x)???(?oi)???100% £¨4£©?i(?oi)?oi?1???omaxÓÉÒÔÉϿɵãº
;.
.
??arcsinsin(???0i)2K?K????1?2cos(???0i)m?m?K??arccot?cot?oi??L???omax f(x)???(?oi)?100% £¨5£©K??2cos??cos(???)?cos2??oi?10marccos?K?K????1?2cos(???0i)m?m?K??arccot?cot?oi??L??2?x1????ʽÖУºxΪÉè¼Æ±äÁ¿£¬x??????£»¦ÈomaxΪÍâתÏò³µÂÖ×î´óת½Ç£¬ÓÉͼ2
?x2??m?µÃ ?omax?arcsinLDmin?a2 £¨6£©
ʽÖУ¬DminΪÆû³µ×îСתÍäÖ±¾¶£»aΪÖ÷ÏúÆ«ÒÆ¾à¡£
¿¼Âǵ½¶àÊýʹÓù¤¿öÏÂת½Ç¦ÈoСÓÚ20¡ã£¬ÇÒ10¡ãÒÔÄÚµÄСת½ÇʹÓõøü¼ÓƵ·±£¬Òò´ËÈ¡£º
?1.5???(?o)??1.0?0.5??0???o?10?10???o?20?20???o??omax £¨7£©
½¨Á¢Ô¼ÊøÌõ¼þʱӦ¿¼Âǵ½£ºÉè¼Æ±äÁ¿m¼°¦Ã¹ýСʱ£¬»áʹºáÀ¸ËÉϵÄתÏòÁ¦¹ý´ó£»µ±m¹ý´óʱ£¬½«Ê¹ÌÝÐβ¼ÖÃÀ§ÄÑ£¬¹Ê¶ÔmµÄÉÏ¡¢ÏÂÏÞ¼°¶Ô¦ÃµÄÏÂÏÞÓ¦ÉèÖÃÔ¼ÊøÌõ¼þ¡£Òò¦ÃÔ½´ó£¬ÌÝÐÎÔ½½Ó½ü¾ØÐΣ¬Öµ¾ÍÔ½´ó
£¬¶øÓÅ»¯¹ý³ÌÊÇÇó
µÄ¼«Ð¡Öµ£¬¹Ê¿É²»±Ø¶Ô¦ÃµÄÉÏÏÞ¼ÓÒÔÏÞÖÆ¡£×ÛÉÏËùÊö£¬¸÷Éè¼Æ±äÁ¿µÄȡֵ·¶Î§¹¹³ÉµÄÔ¼ÊøÌõ¼þΪ£º
m?mmin?0mmax?m?0 £¨8£©
???min?0ÌÝÐα۳¤¶ÈmÉè¼ÆÊ±³£È¡ÔÚmmin=0.11K£¬mmax=0.15K¡£ÌÝÐε׽ǦÃmin=70¡ã
;.
.
´ËÍ⣬ÓÉ»úеÔÀíµÃÖª£¬ËÄÁ¬¸Ë»ú¹¹µÄ´«¶¯½Ç¦Ä²»Ò˹ýС£¬Í¨³£È¡¦Ä¡Ý¦Ämin£½40¡ã¡£Èçͼ5-2Ëùʾ£¬×ªÏòÌÝÐλú¹¹ÔÚÆû³µÏòÓÒתÍäÖÁ¼«ÏÞλÖÃʱ´ïµ½×îСֵ£¬¹ÊÖ»¿¼ÂÇÓÒתÍäʱ¦Ä¡Ý¦Ämin¼´¿É¡£ÀûÓøÃͼËù×÷µÄ¸¨ÖúÓÃÐéÏß¼°ÓàÏÒ¶¨Àí£¬¿ÉÍÆ³ö×îС´«¶¯½ÇÔ¼ÊøÌõ¼þΪ£º
cos?min?2cos??cos(???omax)2m??0
(cos?min?cos?)cos?K
£¨9£©
ʽÖУº¦ÄminΪ×îС´«¶¯½Ç¡£¦Ämin=40¡ã£¬¹ÊÓÉʽ?omax?arcsinLDmin?a2¿ÉÖª£¬¦Ämin
ΪÉè¼Æ±äÁ¿m¼°¦ÃµÄº¯Êý¡£
ÓÉʽ£¨6£©¡¢Ê½£¨7£©¡¢Ê½£¨8£©ºÍʽ£¨9£©ËÄÏîÔ¼ÊøÌõ¼þËùÐγɵĿÉÐÐÓò£¬Èçͼ3ËùʾµÄ¼¸ÖÖÇé¿ö¡£
ͼ3bÊÊÓÃÓÚÒªÇó¦Ämin½Ï´ó£¬¶ø¦Ãmin¿ÉСЩµÄ³µÐÍ£»Í¼5-3cÊÊÓÃÓÚÒªÇó¦Ãmin½Ï´ó£¬¶ø¦ÄminСЩµÄ³µÐÍ£»Í¼3aÊÊÓýéÓÚͼ3b¡¢cÖ®¼äÒªÇóµÄ³µÐÍ¡£
ͼ3 תÏòÌÝÐλú¹¹ÓÅ»¯Éè¼ÆµÄ¿ÉÐÐÓò
ËÄ¡¢ÕûÌåʽתÏòÌÝÐγÌÐò±àд
£¨1£©ÓÅ»¯±à³ÌËùÐèÊý¾Ý£º
Öá¾à£ºL=2775mm Â־ࣺK=1560mm ×îСתÍä°ë¾¶£ºR=5300mm תÏòÌÝÐαۣºm ¼ÆËã¿ÉµÃµ×±ß³¤£ºL-2*a £¨2£©function fuun£®m ±à¼¹ý³Ì
;.
.
ÔÚMATLAB´°¿Úн¨Ò»¸ö¿Õ°×MÎļþ ½«ÏÂʽÊäÈë
function c=theatar() %½¨Á¢Ö÷º¯Êý
global options L b r a K thetamax cl cr fi0 %¶¨ÒåÈ«¾Ö±äÁ¿
K=1638; %input('ÊäÈëÖ÷ÏúÖÐÐÄÏß¼ä¾à£¨mm£©'); %ÒÀ´Î¸øÓ輸¸ö±äÁ¿¸³Öµ L=3308; %input('ÊäÈëÖá¾à£¨mm£©');
thetamax=40; %input('ÊäÈëÍâתÏòÂÖ×î´óת½Ç£¨¶È£©'); x(1)=175; %input('±Û³¤£¨mm£©'); x(2)=74.5; %input('µ×½Ç£¨¶È£©'); b=8; %input('ÄÚÇã½Ç£¨¶È£©'); r=2; %input('ºóÇã½Ç£¨¶È£©'); a=1; %input('ÍâÇã½Ç£¨¶È£©');
thetamax=thetamax*pi/180; %µ¥Î»×ª»»£¬»¡¶ÈÓë¶ÈÊýת±ä lb(1)=0.11*K; %ÉèÖÃÉÏÏÂÏÞ lb(2)=1.2217; ?ot(K/(1.2*L)); ub(1)=0.13*K; ub(2)=pi/2;
fil=linspace(0,thetamax,61); lb=[lb(1),lb(2)]; ub=[ub(1),ub(2)]; x0=[x(1),x(2)];
% A=[0.251 0.372]; % b=[0.143];
[y,fval]=fmincon('fuun',x0,[],[],[],[],lb,ub,[]);
%ÀûÓù¤¾ßÏäÖеÄx = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)½øÐмÆËã Y=y;
%[y,resnorm]=lsqnonlin('fuun',x0,lb,ub,options) ?tae(i) y = fmincon(fuun,x0,[],[],[],[],lb,ub) for i=1:61 %ÉèÖÃ60¸öÇøÓò fil=linspace(0,thetamax,61); ?tae(i)=acot(cot(fil(i))-(K/L));
fi=fii(r*pi/180,b*pi/180);%ÒÔϽ«¸÷¹«Ê½µ¥Î»×ª»»£¬²¢´úÈ빫ʽ dt=delta(r*pi/180,fii(r*pi/180,b*pi/180));%=dt
d=Di(fii(r*pi/180,b*pi/180),a*pi/180,delta(r*pi/180,fii(r*pi/180,b*pi/180)));%=d
Mid_w=Ww(a*pi/180,delta(r*pi/180,fii(r*pi/180,b*pi/180)),Di(fii(r*pi/180,b*pi/180),a*pi/180,delta(r*pi/180,fii(r*pi/180,b*pi/180))));%=w a1(i)=alfa(fi,d,fil(i),Mid_w);
A(i)=K*cos(b*pi/180)-x(1)*cos(2*(b*pi/180))*cos(x(2)*pi/180+fil(i)); B(i)=x(1)*sin(x(2)*pi/180+fil(i));
C(i)=K*cos(b*pi/180)*cos(x(2)*pi/180+fil(i))-2*K*cos(b*pi/180)*cos(x(2)*pi/180)+2*x(1)*(cos(b*pi/180)^2)*(cos(x(2)*pi/180)^2)-x(1);
fir(i)=abs(fiir(A(i),B(i),C(i),x(2)*pi/180));
;.