2019年重庆市中考数学试题A卷word版有答案
一、选择题(本大题12个小题,每小题4分,共48分)
1.下列各数中,比-1小的数是( ) A、2; B、1; C、0; D、-2. 提示:根据数的大小比较.答案D.
2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( ) 从正面看ABCD提示:根据主视图的意义.答案A.
3.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是( )
A OBD CA、2; B、3; C、4; D、5.
提示:根据相似三角形的性质.答案C.
4.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为( )
CD
B AO
A、40°; B、50°; C、80°; D、100°.
提示:根据圆的切线性质及圆周角和圆心角的关系性质.答案C. 5.下列命题正确的是( )
A、有一个角是直角的平行四边形是矩形; B、四条边相等的四边形是矩形; C、有一组邻边相等的平行四边形是矩形; D、对角线相等的四边形是矩形. 提示:根据矩形的判定.答案A. 6.估计(23?62)?1的值应在( ) 3A、4和5之间; B、5和6之间; C、6和7之间; D、7和8之间. 提示:化简得2?26.答案C.
7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其
2的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙3的钱数为y,则可建立方程组为( )
1???x?2y?50?x?A、?;B、?2?x?y?50?x??3?1?1?1y?50x?y?50??2x?y?5022;C、?;D、?. 222?x?y?50?x?y?50y?5033?3?提示:根据列二元一次方程组的思路.答案A.
8.按如图所示的运算程序,能使输出y值为1的是( )
A、m=1,n=1; B、m=1,n=0; C、m=1,n=2; D、m=2,n=1. 是y=2m+1
输出y值 输入m,nm≤n y=2n-1提示:用试验法.答案D. 否9.如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y?k(k?0,x?0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为( ) xyC
DE
O D、A、16; B、20; C、32;40. ABx提示:易得△DAB∽△AOD,AD=25,则AB=45,所以DB=10,E(4,5).答案B.
10.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡
度(或坡比)i=1:2.4的山坡AB上发现有一棵占树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为( )(参考数据:sin48°≈0.73,cos8°≈0.67,tan48°≈1.11) D BC EAA、17.0米; B、21.9米; C、23.3米; D、33.3米.
提示:延长DC交直线AE于F.在直角三角形ACF中,易求得CF=10,AF=24,则EF=30. 所以DF=30×1.11=33.3.答案C.
11??x?4(4a?2)?22y?ay?411.若关于x的一元一次不等式组?的解集是x≤a,且关于y的分式方程??13x?1y?11?y??x?22?有非负整数解,则符合条件的所有整数a的和为( )
A、0; B、1; C、4; D、6.
提示:由不等式组的条件得:a<5.由分式方程的条件得:a≥-3的奇数且a≠-1.综上所述:整数a为-3,1,3.答案B.
///
12.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC,DC与AB交于点
///
E,连结AC,若AD=AC=2,BD=3则点D到BC的距离为( ) A、
33321; B、; 27BC/E/
C、7; D、13.
/
提示:过D作DF⊥BC于F,连接CC交BD于G.
///
易得BD⊥CC,AC=AD=CD=CD=2,
/
/
/
AD/
C/
则∠ADC=60°,∠DCG=30°,所以DG=1,CG=3,BG=BD-DG=2,BC=7.在△BCD中利用面积可求出DF.答案B.
二、填空题(本大题6个小题,每小题4分,共24分)
13.计算:(??3)0?()?1= . 提示:根据零指数幂、负整数指数幂.答案3. 14. 今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 .
7
提示:根据科学记数法的意义.答案2.56×10.
15.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 . 提示:所有结果有36种,符合条件的有9种.答案
1. 41216.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留π)
AD
O
提示:菱形面积减去三分之二圆面积.答案23?CB2?. 317.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 米.
y/米
4000
提示:由图知甲的速度为4000÷(12-2-2)=500米分.乙的速度为4000÷(2+2)=1000米/分. 则乙回到公Ox//分12司时,用了4分钟,而此时甲前行了500×4=2000米.答案6000米.
18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的黄连,则黄连种植总面积将达到这三种中药材种植总面积的
9种植1619.为使川香种植总面积与贝母种植总面积40之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 .
提示:设已种植的川香面积为4x,贝母面积为3x,黄连面积5x.余下面积为y,其中种植川香面积为a,贝母面积为b,黄连面积为
5x?9y.由题意得: 169199974x?a3y?(12x?y),解得y=8x,则y=x,所以a?b?x,又?. 16401623x?b4212解得a=x,b=3x.所以该村还需种植贝母面积3x,该村种植这三种中药材的总面积为4x+3x+5x+8x=20x.答案3︰20.
三、解答题(本大题7个小题,每小题10分,共70分) 19.计算:
2
(1)(x+y)-y(2x+y)
222
解:原式=x+2xy+y-2xy-y ……(3分)
2
=x ……(5分)
9?4aa2?9)?(2)(a? a?2a?2a2?2a9?4a(a?3)(a?3)?)?解:原式=( a?2a?2a?2(a?3)2a?2 = ……(9分) ?a?2(a?3)(a?3) =
a?3 ……(10分) a?320.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F. A(1)若∠C=36°,求∠BAD的度数.
FE(2)求证:FB=FE. 解与证:(1)∵AB=AC,D是BC边上的中点.
BDC∴∠ADB=∠ADC=90°,∠BAD=∠CAD. ……(3分)
∴∠CAD=90°-∠C=90°-36°=54°……(5分) (2)∵BE平分∠ABC,∴∠EBF=∠EBC ∵EF∥BC,∴∠BEF=∠EBC. ∴∠EBF=∠BEF. ……(9分) ∴FB=FE.
21.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:
七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82 八年级10名学生的竞赛成绩在C组中的数据是:94,90,94 八年级抽取的学生竞赛成绩七、八年级抽取的学生竞赛成绩统计表 扇形统计图年级八年级七年级10%
B9292平均数C A20%中位数b93
众数100c D50.4方差52a%
根据以上信息,解答下列问题:
(1)直接写出上述图表中a,b,c的值;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);
(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少? 解:(1)a=40,b=94,c=99. ……(3分)
(2)八年级学生掌握防溺水安全知识较好,理由如下(写出其中一条即可): ①七、八年级学生的竞赛成绩平均分相同,八年级学生成绩的中位数94高于七年级学生成绩的中位数93; ②七、八年级学生的竞赛成绩平均分相同,八年级学生成绩的众数100高于七年级学生成绩的众数99. ……(6分)
(3)∵七年级10名学生中,成绩在C,D两组中有6人,八年级10名学生中,成绩在C,D两组中有7人. ∴
13?720=468(人) 20答:估计此次竞赛中,七、八年级成绩优秀的学生有468人. ……(10分) 22.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.
定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,