设EM=x(0 =(,3,0),| |= . 13. 设tanα=x,则=6,解得x=. 14. 因为(a+)5的展开式中的项为a2()3=,所以10a2=1,则|a|=. 15.- 易知曲线y=x2(x≥0)是抛物线C:x2=4y的右半部分,如图,其焦点为F(0,1),准线为y=-1.过A作AH⊥准线,垂足为 H,则|AH|=|AF|,因为|FB|=6|FA|,所以|AB|=5|AH|,tan∠ABH===,故直线l的斜率为- . 16.(-∞,-3]∪(3,+∞) 设平行于直线y=-3x+1的切线的切点为(m,m3-am2), ∵y'=3x2-2ax,∴3m2-2am=-3,Δ=4a2-36≥0,解得a∈(-∞,-3]∪[3,+∞). 若切点在直线y=-3x+1上,则m3-am2=-3m+1,又3m2-2am=-3, 从而m3-3m+2=(m-1)2(m+2)=0,解得m=1或m=-2. 当m=1时,a=3,此时方程3m2-6m+3=0有两个相等的实根,曲线y=x3-ax2不存在平行于直线y=-3x+1的切线; 当m=-2时,a=-,此时方程2m2+5m+2=0有两个不等的实根,曲线y=x3-ax2仅存在一条平行于直线y=-3x+1的切线. 综上,a的取值范围为(-∞,-3]∪(3,+∞). 17.(1)证明:因为 -=1, 9 所以 +1=2(+1), ............................................................................................................................................................ 2分 又+1=2, ............................................................................................................................................................................... 3分 所以数列{+1}为等比数列,且首项为2,公比为2. .............................................................................................................. 4分 (2)解:由(1)知+1=2n, ........................................................................................................................................................... 6分 所以+2n=2n+2n-1. ............................................................................................................................................................. 7分 所以Sn=+ =2n+1+n2-2. ............................................................................................................................. 12分 18.(1)证明:因为AA1⊥平面ABC,BC?平面ABC, 所以AA1⊥BC. ....................................................................................................................................................................... 1分 因为AB=2 ,AC=2BC=4, 所以AB2+BC2=AC2,所以BC⊥AB. ....................................................................................................................................... 3分 因为AB∩AA1=A,所以BC⊥平面ABB1A1. ............................................................................................................................ 4分 又A1D?平面ABB1A1,所以BC⊥A1D. .................................................................................................................................. 5分 (2)解:以B为坐标原点,建立空间直角坐标系B-xyz,如图所示, 则C(0,0,2),D( ,0,0),A1(2 ,4,0). ....................................................................................................................................... 6分 设平面A1CD的法向量为n=(x,y,z), 则 .................................................................................................................................... 8分 令x=4,则n=(4,-,2 ). ..................................................................................................................................................... 9分 易知平面BCC1B1的一个法向量为m=(1,0,0),.................................................................................................................... 10分 10 则cos = . ...................................................................................................................................................... 11分 故所求锐二面角的余弦值为 . ...................................................................................................................................... 12分 19.解:(1)因为该厂只有2名维修工人, 所以要使工厂正常运行,最多只能出现2台大型机器出现故障, ........................................................................................ 1分 故该工厂能正常运行的概率为(1-)5+ ××(1-)4+ ()2(1-)3=. ............................................................................... 4分 (2)(ⅰ)X的可能取值为31,44, ............................................................................................................................................... 6分 P(X=31)=()5= , .................................................................................................................................................................. 7分 P(X=44)=1-=则X的分布列为 , ................................................................................................................................................................. 8分 X P 31 44 9分 故EX=31×+44×= . ............................................................................................................................................... 10分 (ⅱ)若该厂有5名维修工人,则该厂获利的数学期望为5×10-1.5×5=42.5万元, ............................................................ 11分 因为 >42.5,所以该厂不应再招聘1名维修工人. ........................................................................................................ 12分 20.(1)证明:依题意可得,解得 , ....................................................................................................... 2分 则c2=4,c=2,F1(-2,0),F2(2,0), .................................................................................................................................................. 3分 从而|PF2|=3,|F1F2|=4,|PF1|=5, ............................................................................................................................................. 4分 故|PF2|,|F1F2|,|PF1|成等差数列............................................................................................................................................. 5分 (2)解:因为直线PF1的斜率为,所以可设l的方程为x=-y+m. ......................................................................................... 6分 11 将l的方程代入+ =1消去x,得 y2-my+3m2-48=0, ................................................................................................... 7分 设A(x1,y1),B(x2,y2),所以y1+y2= ,y1y2= , ................................................................................................................ 8分 则|y1-y2|== , ............................................................................................................ 9分 所以四边形AF1BF2的面积S=|F1F2|·|y1-y2|== , ....................................................................... 10分 解得m=0, ............................................................................................................................................................................. 11分 故l的方程为x=-y,即4x+3y=0. ....................................................................................................................................... 12分 21.解:(1)f'(x)=2e2x-3-2, ............................................................................................................................................................ 1分 令f'(x)=0,得x=; ................................................................................................................................................................... 2分 令f'(x)<0,得x<;令f'(x)>0,得x>. ...................................................................................................................................... 3分 故f(x)的单调递减区间为(-∞,),单调递增区间为(,+∞), .................................................................................................... 4分 从而f(x)min=f()=-2. ............................................................................................................................................................... 5分 (2)易证mn≤()2,则(x+y+1)(x-y-2)≤()2=, 当且仅当x+y+1=x-y-2,即y=-时,取等号. ........................................................................................................................... 7分 f(x)+2x=e2x-3,则e2x-3≤, ................................................................................................................................................ 8分 令t=2x-1(t>0),则et-2≤t2,即t-2≤2lnt-2ln2. ........................................................................................................................... 9分 12