第十一课时 求不规则物体的体积
教学内容: 求不规则物体的体积 教学目标:
1、使学生进一步熟练掌握长方体和正方体的体积方法。 2、能根据实际情况,应用排水法求一些物体的体积。
3、通学习,让学生体会与生活的紧密联系。培养学生在实践中的应变能力。
教学重点: 运用具体方法求不规则物体的体积。
教学难点: 能理解排水法的原理,会求一些物体的体积。 教学过程: 一、导入
长方体和正方体,我们就会求它们的体积了,那一些不是长方体或正方体的物体,例如:西红柿、土豆、橡皮泥、石块等等,我们能否求出它们的体积呢?今天我们来学习一下。 板书课题,求不规则物体的体积 二、探索学习
1、出示例1 这个西红柿的体积是多少? 让学生说说从图中看到什么? 它们之间有什么关系?
得出:西红柿的体积就是水面上升的那部分水的体积。
所以 西红柿的体积是 350-200=150(毫升)=150(立方厘米) 答:这个西红柿的体积是150立方厘米。 2、看书质疑 三、巩固练习
1、书本52页的做一做第2题。
2、把一个铁球沉没在长1.5分米,宽1.2分米的长方体容器里,水面由4.5厘米上升到6厘米,你能求出这个铁球的体积是多少吗? 3、书本54页的第7题。
四、全课小结: 今天你有什么收获?
五、作业设计: 书本54页的9、10、11题。
板书设计; 求不规则物体的体积
出示例1 这个西红柿的体积是多少? 让学生说说从图中看到什么? 它们之间有什么关系?
25
得出:西红柿的体积就是水面上升的那部分水的体积。 所以 西红柿的体积是 350-200=150(毫升)=150(立方厘米)
答:这个西红柿的体积是150立方厘米。
课后反思:
26
第十二课时 整理与复习 第一课时:概念与计算
教学内容: 本单元概念及计算(课文第56页的第1—4题) 教学目标:
1、通过整理与复习,加深学生对本单元所学的长方体与正方体的主要概念计算方法、计量单位和单位间进率的理解。
2、通过系统整理,沟通知识的联系,帮助学生形成整体认识结构。 3、能应用所学的知识、解决一些实际问题,发展学生的应用意识,培养学生的空间观念。
教学重点: 回顾所学知识,并能综合利用。 教学过程:
一、整理和复习:
教师:本单元我们围绕长方体和正方体学习了哪些知识?(学习了长方体正方体的特征,学习了它们的表面积和体积的计算方法) 1、出示一个长方体和正方体,复习长方体和正方体的特征 长方体 正方体 相同点:6个面、12条棱、8个顶点
不同点:面的形状:一般都是长方形 六个面都是正方形 (有时也有相对的面是正方形)
面的大小:相对的面面积相等 六个面的面积都是相等 棱长:相对棱长度相等???? 十二条棱长度相等 联系:正方体是特殊的长方体
提问:什么叫长方体的长、宽、高?
2、复习长方体和正方体的表面积、体积和容积。 表面积 体积???容积
意义 长方体或正方体六 物体所占空间的大小 一个容器所能容
个面的面积总和 纳物体的体积 计算方法 S=(ab+ah+bh)×2 V=abh(V=Sh) V=abh
S=6a2 V=a3(V=Sh)
常用计量单位:平方米、平方分米、平方厘米、 立方米、立方分米、立方厘米、升、毫升
提问:容器和体积有什么异同点?
3、复习长度、面积、体积、容积计量单位的意义、进率积及其换算 的方法。
常用单位 进率
长度 米 分米 厘米 1米=10分米 1分米=10厘米 面积 平方米 平方分米 平方厘米 1平方米=100平方分米
1平方分米=100平方厘米
27
体积 立方米 立方分米 立方厘米 1立方米 =1000立方分米
1立方分米=1000立方厘米
容积 升 毫升 1升=1000毫升
1升=1立方分米 1毫升=1立方厘米
二、巩固练习: 课本第56页的第1至4题
板书设计: 概念与计算
表面积 体积 容积
意义 长方体或正方体六 物体所占空间的大小 一个容器所能容 个面的面积总和 纳物体的体积 计算方法 S=(ab+ah+bh)×2 V=abh
(V=Sh) V=abh
S=6a2 V=a3(V=Sh)
常用计量单位:平方米、平方分米、平方厘米、 立方米、立方分米、立方厘米、升、毫升
课后反思:
28