细胞生物学(第四版)习题大全 下载本文

体串连在一条mRNA分子上高效地进行肽链的合成,这种具有特殊功能与形态结构的核糖体与mRNA的聚合体称为多聚核糖体。 2)多聚核糖体的生物学意义:

⑴细胞内各种多肽的合成,不论其分子量的大小或是mRNA的长短如何,单位时间内所合成的多肽分子数目都大体相等。

⑵以多聚核糖体的形式进行多肽合成,对mRNA的利用及对其浓度的调控更为经济和有效。

4、试比较原核细胞与真核细胞的核糖体在结构与组分及蛋白质合成上的异同点? 结构与组分的比较: 在蛋白质合成上的相同点:

原核细胞与真核细胞的蛋白质合成均是以多聚核糖体的形式进行的,可大大提高多肽合成的速度。

在蛋白质合成上的不同点:

(1)核细胞由DNA转录mRNA和由mRNA翻译成蛋白质是同时并几乎在同一部位进行;(2)真核细胞的DNA转录在核内,蛋白质合成在胞质中。

第十章 细胞骨架

一、名词解释

1、细胞骨架:是指存在于真核细胞质内的蛋白纤维网架体系。包括狭义和广义的细胞骨架两种概念。广义的细胞骨架包括:细胞核骨架、细胞质骨架、细胞膜骨架和细胞外基质。狭义的细胞骨架指细胞质骨架,包括微丝、微管和中间纤维。 2、应力纤维:应力纤维是真核细胞中广泛存在的微丝束结构,由大量平行排列的微丝组成,与细胞间或细胞与基质表面的粘着有密切关系,可能在细胞形态发生、细胞分化和组织的形成等方面具有重要作用。

3、微管:在真核细胞质中,由微管蛋白构成的,可形成纺锤体、中心体及细胞特化结构鞭毛和纤毛的结构。

4、微丝:在真核细胞的细胞质中,由肌动蛋白和肌球蛋白构成的,可在细胞形态的支持及细胞肌性收缩和非肌性运动等方面起重要作用的结构。

5、中间纤维:存在于真核细胞质中的,由蛋白质构成的,其直径介于微管和微丝之间,在支持细胞形态、参与物质运输等方面起重要作用的纤维状结构。 6、踏车现象:在一定条件下,细胞骨架在装配过程中,一端发生装配使微管或微丝延长,而另一端发生去装配而使微管或微丝缩短,实际上是正极的装配速度快于负

29

极的装配速度,这种现象称为踏车现象。

7、微管组织中心(MTOC):微管在生理状态及实验处理解聚后重新装配的发生处称为微管组织中心。动物细胞的MTOC为中心体。MTOC决定了细胞中微管的极性,微管的(-)极指向MTOC,(+)极背向MTOC。

8、胞质分裂环:在有丝分裂末期,两个即将分裂的子细胞之间产生一个收缩环。收缩环是由大量平行排列的微丝组成,由分裂末期胞质中的肌动蛋白装配而成,随着收缩环的收缩,两个子细胞被分开。胞质分裂后,收缩环即消失。 二、简答题

1、微丝的化学组成及在细胞中的功能。

答:微丝的化学组成:主要成分为肌动蛋白和肌球蛋白,肌球蛋白起控制微丝的形成、连接、盖帽、切断的作用,也可影响微丝的功能。其他成分为调节蛋白、连接蛋白、交联蛋白。

微丝的功能:(1)与微管共同组成细胞的骨架,维持细胞的形状。(2)具有非肌性运动功能,与细胞质运动、细胞的变形运动、胞吐作用、细胞器与分子运动、细胞分裂时的膜缢缩有关。(3)具有肌性收缩作用(4)与其他细胞器相连,关系密切。(5)参与细胞内信号传递和物质运输。 2、什么是微管组织中心,它与微管有何关系。

答:微管组织中心是指微管装配的发生处。它可以调节微管蛋白的聚合和解聚,使微管增长或缩短。而微管是由微管蛋白组成的一个结构。二者有很大的不同,但又有十分密切的关系。微管组织中心可以指挥微管的组装与去组装,它可以根据细胞的生理需要,调节微管的活动。如在细胞有丝分裂前期,根据染色体平均分配的需要,从微管组织中心:中心粒和染色体着丝粒处进行微管的装配形成纺锤体,到分裂末期,纺锤体解聚成微管蛋白。所以说,微管组织中心是微管活动的指挥 3、简述中间纤维的结构及功能。

答:中间纤维的直径约7~12nm的中空管状结构,由4或8个亚丝组成。单独或成束存在于细胞中。中间纤维具有一个较稳定的310个氨基酸的α螺旋组成的杆状中心区,杆状区两端为非螺旋的头部区(N端)和尾部区(C端)。头部区和尾部区由不同的氨基酸构成,为高度可变区域。

功能:(1)支持和固定作用:支持细胞形态,固定细胞核。(2)物质运输和信息传递作用:在细胞质中与微管、微丝共同完成物质的运输,在细胞核内,与DNA的复制和转录有关。(3)细胞分裂时,对纺锤体和染色体起空间支架作用,负责子细胞内细胞器的分配与定位。(4)在细胞癌变过程中起调控作用。 4、比较微管、微丝和中间纤维的异同。

答:微管、微丝和中间纤维的相同点:(1)在化学组成上均由蛋白质构成。(2)在

30

结构上都是纤维状,共同组成细胞骨架。(30在功能都可支持细胞的形状;都参与细胞内物质运输和信息的传递;都能在细胞运动和细胞分裂上发挥重要作用。 微管、微丝和中间纤维的不同点:(1)在化学组成上均由蛋白质构成,但三者的蛋白质的种类不同,而且中等纤维在不同种类细胞中的基本成分也不同。(2)在结构上,微管和中间纤维是中空的纤维状,微丝是实心的纤维状。微管的结构是均一的,而中等纤维结构是为中央为杆状部,两侧为头部或尾部。(3)功能不同:微管可构成中心粒、鞭毛或纤毛等重要的细胞器和附属结构,在细胞运动时或细胞分裂时发挥作用:微丝在细胞的肌性收缩或非肌性收缩中发挥作用,使细胞更好的执行生理功能;中等纤维具有固定细胞核作用,行使子细胞中的细胞器分配与定位的功能,还可能与DNA的复制与转录有关。

总之,微管、微丝和中间纤维是真核细胞内重要的非膜相结构,共同担负维持细胞形态,细胞器位置的固定及物质和信息传递重要功能。 5、试述微管的化学组成、类型和功能。

答:微管的化学组成:主要化学成分为微管蛋白,为酸性蛋白。其他化学成分为微管结合蛋白包括为微管相关蛋白、微管修饰蛋白、达因蛋白。 微管的类型:单微管、二联管、三联管。

微管的功能:(1)构成细胞的网状支架,维持细胞的形态。(2)参与细胞器的分布与运动,固定支持细胞器的位置(3)参与细胞收缩和伪足运动,是鞭毛纤毛等细胞运动器官的基本组成成分。(4)参与细胞分裂时染色体的分离和位移。(5)参与细胞物质运输和传递。

6、通过细胞骨架一章的学习,你对生命体的自组装原则有何认识?

(1)生物体是由生物大分子自装配而成;(2)在装配过程中收到多种因素影响;(3)具有高度时空顺序性。

7、除支持作用和运动功能外,细胞骨架还有什么功能?怎样理解骨架的概念? 除支持作用和运动功能外,细胞骨架还具有为物质运输提供轨道、参与肌肉收缩和细胞分化、介导染色体的移动和动物细胞胞质分裂、形成细胞的特化结构等功能。骨架是指真核细胞内一个复杂的由特异蛋白组成的纤维网架结构,都具有支持的功能,在细胞形态维持和膜性细胞器定位和移动过程中具有重要的作用。

在理解骨架概念时,要注意以下几点:① 细胞骨架是一种动态平衡的结构;② 具有多种功能;③ 由蛋白质组装而成,组装的过程受到信号的调节。 8、细胞中同时存在几种骨架体系有什么意义?是否是物质和能量的一种浪费? 细胞内同时存在微管、微丝和中间丝等几种骨架体系,它们在细胞的生命活动各承担了不一样的角色,

微管功能:(1)维持细胞的形态;(2)细胞器的定位;(3)细胞内运输;(4)纺锤

31

体与染色体运动;(5)纤毛和鞭毛运动;

微丝功能:(1) 维持细胞外形;(2)胞质环流;(3)变形运动;(4)支持微绒毛;(5)形成微丝束与应力纤维;(6)胞质分裂;

中间丝功能: (1)增强细胞抗机械压力的能力;(2) 参与桥粒和半桥粒的形成和维持;(3)对于维持肌肉的收缩装置起重要作用 微管、微丝和中间丝共同构成了细胞内精密的骨架体系, 三者在细胞的各种生命活动中既相互配合又各有分工所以不是物质和能量的浪费。

9、为什么说细胞核中的骨架结构是必需的?核骨架与染色体骨架有何区别与联系?

细胞结构中的细胞膜骨架,核骨架都是必需的,因为骨架可以维持一个正常细胞的结构,可以进行大量的物质或遗传信息的储存.染色体骨架是存在于核骨架里的。 10、为什么说细胞骨架是细胞结构和功能的组织者?

微管能形成鞭毛、纤毛、基体和中心体等结构,微丝参与微绒毛、收缩环、应力纤维、黏合斑和黏合带的形成,中间丝对维持细胞核的形态和形成桥粒等具有重要作用。细胞骨架在细胞形态发生和维持等方面就具有重要作用。除支持功能外,它还在物质运输、信号传递、细胞运动、细胞分裂等活动中具有重要作用。因此说细胞骨架是细胞结构和胞内的组织者。

11、如何理解细胞骨架的动态不稳定性?这一现象与细胞生命活动过程有什么关系?

细胞骨架的动态不稳定性是指细胞骨架结构在一定条件下可以动态去组装或者重新组装,这一特性在生命活动过程中具有非常重要的生物学意义:(1)在细胞周期中,细胞内的微管经历着动态组装和去组装,在间期和分裂期,其分布或组织形式存在很大的差异。(2)胞质环流和细胞的运动或迁移需要凝胶与溶胶的互变。(3)细胞的分裂需要纺锤体的组装于解聚。(4)细胞核的消失与重新形成也涉及核纤层结构的动态不稳定性。(5)踏车行为不是没有意义的,它改变了微管或微丝在细胞中分布的部位,可能与细胞的移动有关。 因此,细胞骨架的动态不稳定性在生命过程中具有重要的作用。

第十一章 细胞增殖与其调控

一、名词解释

1、细胞周期:连续分裂的细胞,从上一次有丝分裂结束开始到下一次有丝分裂结束所经历的整个过程。在这个过程中,细胞遗传物质复制,各组分加倍,平均分配到两个子细胞中。

2、细胞同步化:在自然过程中发生的或因研究工作的需要,为得到具有分裂能力且

32