∴k?0.3746?1.54226??0.26992?2?0.3746?1.54226?0.25?0.26992?0.252?0.7433
220.5???1?0.7433??1?1.1060.5???0.9247 ??T???1?k1?T??r????R2Tc28.3142?405.62a?T??ac??T??0.45724??T??0.45724??0.9247?0.4262Pa?m6?mol?2 6Pc11.28?10b?0.07780RTc8.314?405.6?53?1?0.07780??2.326?10m?mol 6Pc11.28?10∴P?a?T?RT ?V?bV?V?b??b?V?b?8.314?448.60.4262??9.458?2.326??10?59.458??9.458?2.326??10?10?2.326??9.458?2.326??10?10?
?19.00MPa
Vr?VVc?9.458?10?57.25?10?5?1.305<2 适用普压法,迭代进行计算,方法同1-1(3)
(5) 普遍化关系式 ∵
2-6.试计算含有30%(摩尔分数)氮气(1)和70%(摩尔分数)正丁烷(2)气体混合物7g,在188℃、6.888MPa条件下的体积。已知B11=14cm3/mol,B22=-265cm3/mol,B12=-9.5cm3/mol。 解:Bm2?y12B11?2y1y2B12?y2B22
?0.32?14?2?0.3?0.7???9.5??0.72???265???132.58cm3/mol
Zm?1?BmPPV?RTRT→V(摩尔体积)=4.24×10-4m3/mol
假设气体混合物总的摩尔数为n,则
0.3n×28+0.7n×58=7→n=0.1429mol
∴V= n×V(摩尔体积)=0.1429×4.24×10-4=60.57 cm3
2-8.试用R-K方程和SRK方程计算273K、101.3MPa下氮的压缩因子。已知实验值为2.0685 解:适用EOS的普遍化形式
查附录二得NH3的临界参数:Tc=126.2K Pc=3.394MPa ω=0.04 (1)R-K方程的普遍化
R2Tc2.58.3142?126.22.560.5?2 a?0.42748?0.42748?1.5577Pa?m?K?mol6Pc3.394?10b?0.08664RTc8.314?126.2?53?1?0.08664?2.678?10m?mol 6Pc3.394?10A?aPR2T2.5
B?bPRT
Aa1.5577???1.551 BbRT1.52.678?10?5?8.314?2731.5BbbP2.678?10?5?101.3?1061.1952????∴h? ① ZVZRTZ?8.314?273ZZ?1A?h?1?h????1.551???? ② 1?hB?1?h?1?h?1?h?①、②两式联立,迭代求解压缩因子Z (2)SRK方程的普遍化
Tr?TTc?273126.2?2.163m?0.480?1.574??0.176?2?0.480?1.574?0.04?0.176?0.042?0.5427
22110.50.5??????T???1?m?1?Tr???1?0.5427??1?2.163???0.2563 Tr2.163?R2Tc28.3142?126.22.5a?0.42748???T??0.42748?0.2563?0.3992Pa?m6?K0.5?mol?2 6Pc3.394?10b?0.08664RTc8.314?126.2?0.08664?2.678?10?5m3?mol?1 6Pc3.394?10Aa0.3992???0.3975 BbRT1.52.678?10?5?8.314?2731.5BbbP2.678?10?5?101.3?1061.1952????∴h? ① ZVZRTZ?8.314?273ZZ?1A?h?1?h?????0.3975??? ② 1?hB?1?h?1?h1?h??①、②两式联立,迭代求解压缩因子Z
第三章
3-1. 物质的体积膨胀系数?和等温压缩系数k的定义分别为:
??1??V?。试导出服从1??V?,k??????V??P?TV??T?PVander Waals状态方程的?和k的表达式。 解:Van der waals 方程P?RTa?2 V?bV??P?????V?T??V???T? ????????1??T?P??P?V由Z=f(x,y)的性质??z????x????y???1得
????????x?y??y?z??z?x又 ??P??2a???3RT??V?TV?V?b?2 ??P??????T?VR
V?bRT???V?V?b所以 ?2a
???1?3???2???V?b???V???T?PR?RV3?V?b???V? ???23??T?PRTV?2a?V?b?故 ??1??V????RV2?V?b?RTV?2a?V?b?32
V??T?PV2?V?b?1??V? k?????23V??P?TRTV?2a?V?b?3-2. 某理想气体借活塞之助装于钢瓶中,压力为34.45MPa,温度为93℃,反抗一恒定的外压力3.45 MPa而等温膨胀,直到两倍于其初始容积为止,试计算此过程之?U、?H、?S、?A、?G、
2?TdS、
?pdV、Q和W。
解:理想气体等温过程,?U=0、?H=0 ∴ Q=-W=
?pdV??pdV??V1V22V1V1RTdV?RTln2=2109.2 J/mol V∴ W=-2109.2 J/mol 又
dS?CPR??V?dT??V?? 理想气体等温膨胀过程dT=0、 ??dP????TPT??T?P??P∴
dS??R dPPS2P2S1P1P2P1∴
?S??dS??R?dlnP??RlnPK) ?Rln2=5.763J/(mol·
K) ?A??U?T?S=-366×5.763=-2109.26 J/(mol·K) ?G??H?T?S??A=-2109.26 J/(mol·K) ?TdS?T?S??A=-2109.26 J/(mol·
?pdV??pdV??V1V22V1V1RTdV?RTln2=2109.2 J/mol V3-3. 试求算1kmol氮气在压力为10.13MPa、温度为773K下的内能、焓、熵、CV、Cp和自由焓之值。假设氮气服从理想气体定律。已知:
(1)在0.1013 MPa时氮的Cp与温度的关系为Cp(2)假定在0℃及0.1013 MPa时氮的焓为零;
(3)在298K及0.1013 MPa时氮的熵为191.76J/(mol·K)。
3-4. 设氯在27℃、0.1 MPa下的焓、熵值为零,试求227℃、10 MPa下氯的焓、熵值。已知氯在理想气体状态下的定压摩尔热容为
?3?62Cigp?31.696?10.144?10T?4.038?10TJ/?mol?K?
?27.22?0.004187TJ/?mol?K?;
解:分析热力学过程
300K,0.1 MPa 真实气体 H=0,S=0
?H、?S10 MPa ????? 500K,
真实气体 -H1R H2R
-S1R S2R
300K,0.1 MPa 理想气体
??????H1、?S1
500K,10 MPa 理想气体
查附录二得氯的临界参数为:Tc=417K、Pc=7.701MPa、ω=0.073 ∴(1)300K、0.1MPa的真实气体转换为理想气体的剩余焓和剩余熵
Tr= T1/ Tc=300/417=0.719 Pr= P1/ Pc=0.1/7.701=0.013—利用普维法计算
0.422dB0B?0.083?1.6??0.6324?0.675Tr2.6?1.592TrdTr
00.172dB1B?0.139?4.2??0.5485?0.722Tr5.2?4.014TrdTr
1?dB0SRdB1??0?1HRdB0dB1????Pr????Pr?B?Tr???B?Tr???RTcdTdTRdTdTr?r?r???r?又
代入数据计算得H1=-91.41J/mol、
RS1R=-0.2037 J/( mol·K)
(2)理想气体由300K、0.1MPa到500K、10MPa过程的焓变和熵变
?H1??CdT??T1T2igp50030031.696?10.144?10?3T?4.038?10?6T2dT
=7.02kJ/mol
?S1??T2CigpTT1dT?Rln500P210??31.696T?10.144?10?3?4.038?10?6TdT?Rln300P0.1 1=-20.39 J/( mol·K)
(3) 500K、10MPa的理想气体转换为真实气体的剩余焓和剩余熵
Tr= T2/ Tc=500/417=1.199 Pr= P2/ Pc=10/7.701=1.299—利用普维法计算
0.422dB0B?0.083?1.6??0.2326?0.675Tr2.6?0.4211TrdTr
00.172dB1B?0.139?4.2??0.05874?0.722Tr5.2?0.281TrdTr
1?dB0SRdB1??0?1HRdB0dB1????Pr????Pr?B?Tr???B?Tr???RTcdTdTRdTdTr?r?r???r?又
代入数据计算得
H2R=-3.41KJ/mol、
S2R=-4.768 J/( mol·K)
∴?H=H2-H1= H2=-
H1R+
?H1+
H2R=91.41+7020-3410=3.701KJ/mol
RR?S= S-S= S=-S1+?S1+S2=0.2037-20.39-4.768=-24.95 J/( mol·K)
212
3-5. 试用普遍化方法计算二氧化碳在473.2K、30 MPa下的焓与熵。已知在相同条件下,二氧化碳处于理