Ê®Äê¸ß¿¼ÕæÌâ·ÖÀà»ã±à(2010-2019) Êýѧ רÌâ03 º¯Êý Word°æº¬´ð°¸½âÎö°æ ÏÂÔØ±¾ÎÄ

f(f(15))µÄֵΪ .

94.(2018?È«¹ú1?ÎÄT13)ÒÑÖªº¯Êýf(x)=log2(x+a),Èôf(3)=1,Ôòa= .

95.(2019?Õã½­?T16)ÒÑÖªa¡ÊR,º¯Êýf(x)=ax-x.Èô´æÔÚt¡ÊR,ʹµÃ|f(t+2)-f(t)|¡Ü3,ÔòʵÊýaµÄ×î´óÖµÊÇ_______________

96.(2019?½­ËÕ?T4)º¯Êýy= ¡Ì7+6x-x2µÄ¶¨ÒåÓòÊÇ . 97.(2018?½­ËÕ?T5)º¯Êýf(x)=¡Ìlog2x-1µÄ¶¨ÒåÓòΪ .

98.(2018?±±¾©?ÀíT13)ÄÜ˵Ã÷¡°Èôf(x)>f(0)¶ÔÈÎÒâµÄx¡Ê(0,2]¶¼³ÉÁ¢,Ôòf(x)ÔÚ[0,2]ÉÏÊÇÔöº¯Êý¡±Îª¼ÙÃüÌâµÄÒ»¸öº¯ÊýÊÇ_____________

99.(2018?ÉϺ£?T11)ÒÑÖª³£Êýa>0,º¯Êýf(x)=

µÄͼÏñ¾­¹ýµãP(p,),Q(q,-).Èô2=36pq,Ôòa=. 2x+ax55

2x

6

1

p+q

3

2

2

100.(2018?ÉϺ£?T4)Éè³£Êýa¡ÊR,º¯Êýf(x)=log2(x+a).Èôf(x)µÄ·´º¯ÊýµÄͼÏñ¾­¹ýµã(3,1),Ôòa= . 101.(2018?ÉϺ£?T7)ÒÑÖª¦Á¡Ê{-2,-1,-,,1,2,3},ÈôÃݺ¯Êýf(x)=xÎªÆæº¯Êý,ÇÒÔÚ(0,+¡Þ)Éϵݼõ,Ôò

2

21

1

¦Á

¦Á= .

x2+2ax+a,x¡Ü0,

102.(2018?Ìì½ò?ÀíT14)ÒÑÖªa>0,º¯Êýf(x)={2Èô¹ØÓÚxµÄ·½³Ìf(x)=axÇ¡ÓÐ2¸ö»¥Òì

-x+2ax-2a,x>0.µÄʵÊý½â,ÔòaµÄȡֵ·¶Î§ÊÇ .

x-4,x¡Ý¦Ë,

103.(2018?Õã½­?T15)ÒÑÖª¦Ë¡ÊR,º¯Êýf(x)={2µ±¦Ë=2ʱ,²»µÈʽf(x)<0µÄ½â¼¯ÊÇ .Èô

x-4x+3,x

104.(2018?ÉϺ£?T19)ijȺÌåµÄÈ˾ùͨÇÚʱ¼ä,ÊÇÖ¸µ¥ÈÕÄÚ¸ÃȺÌåÖгÉÔ±´Ó¾ÓסµØµ½¹¤×÷µØµÄƽ¾ùÓÃʱ.ijµØÉϰà×åSÖеijÉÔ±½öÒÔ×Լݻò¹«½»·½Ê½Í¨ÇÚ.·ÖÎöÏÔʾ:µ±SÖÐx%(0

1800¾ùͨÇÚʱ¼äΪf(x)={(µ¥Î»:·ÖÖÓ),¶ø¹«½»ÈºÌåµÄÈ˾ùͨÇÚʱ¼ä²»ÊÜxÓ°Ïì,ºã2x+x-90,30

(1)µ±xÔÚʲô·¶Î§ÄÚʱ,¹«½»ÈºÌåµÄÈ˾ùͨÇÚʱ¼äÉÙÓÚ×Ô¼ÝȺÌåµÄÈ˾ùͨÇÚʱ¼ä? (2)Çó¸ÃµØÉϰà×åSµÄÈ˾ùͨÇÚʱ¼äg(x)µÄ±í´ïʽ;ÌÖÂÛg(x)µÄµ¥µ÷ÐÔ,²¢ËµÃ÷Æäʵ¼ÊÒâÒå.

x2+2x+a-2,x¡Ü0,

105.(2018?Ìì½ò?ÎÄT14)ÒÑÖªa¡ÊR,º¯Êýf(x)={2Èô¶ÔÈÎÒâx¡Ê[-3,+¡Þ),f(x)¡Ü|x|ºã³É

-x+2x-2a,x>0.Á¢,ÔòaµÄȡֵ·¶Î§ÊÇ.

106.(2017?È«¹ú2?ÎÄT14)ÒÑÖªº¯Êýf(x)ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý,µ±x¡Ê(-¡Þ,0)ʱ,f(x)=2x+x,Ôòf(2)= .

107.(2017?Õã½­?T17)ÒÑÖªa¡ÊR,º¯Êýf(x)=|x+x-a|+aÔÚÇø¼ä[1,4]ÉϵÄ×î´óÖµÊÇ5,ÔòaµÄȡֵ·¶Î§ÊÇ

13

4

3

2

x+1,x¡Ü0,1

108.(2017?È«¹ú3?ÀíT15ÎÄT16)É躯Êýf(x)={xÔòÂú×ãf(x)+f(x-)>1µÄxµÄȡֵ·¶Î§ÊÇ

22,x>0,109.(2017?ɽ¶«?ÎÄT14)ÒÑÖªf(x)ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý,ÇÒf(x+4)=f(x-2).Èôµ±x¡Ê[-3,0]ʱ,f(x)=6,Ôòf(919)= .

110.(2016?½­ËÕ?T5)º¯Êýy=¡Ì3-2x-x2µÄ¶¨ÒåÓòÊÇ . 111.(2016?±±¾©?ÎÄT10)º¯Êýf(x)=x-1 (x¡Ý2)µÄ×î´óֵΪ .

112.(2016?È«¹ú3?ÀíT15)ÒÑÖªf(x)Ϊżº¯Êý,µ±x<0ʱ,f(x)=ln(-x)+3x,ÔòÇúÏßy=f(x)ÔÚµã(1,-3)´¦µÄÇÐÏß·½³ÌÊÇ .

113.(2016?Ìì½ò?ÀíT13)ÒÑÖªf(x)ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý,ÇÒÔÚÇø¼ä(-¡Þ,0)Éϵ¥µ÷µÝÔö.ÈôʵÊýaÂú×ãf(2

|a-1|

-x

x

)>f(-¡Ì2),ÔòaµÄȡֵ·¶Î§ÊÇ .

x

114.(2016?ËÄ´¨?ÎÄT14)Èôº¯Êýf(x)ÊǶ¨ÒåÔÚRÉϵÄÖÜÆÚΪ2µÄÆæº¯Êý,µ±0

2

|x|,x¡Üm,

115.(2016?ɽ¶«?ÎÄT15)ÒÑÖªº¯Êýf(x)={2ÆäÖÐm>0.Èô´æÔÚʵÊýb,ʹµÃ¹ØÓÚxµÄ·½³Ì

x-2mx+4m,x>??,f(x)=bÓÐÈý¸ö²»Í¬µÄ¸ù,ÔòmµÄȡֵ·¶Î§ÊÇ .

x2+(4a-3)x+3a,x<0,

116.(2016?Ìì½ò?ÎÄT14)ÒÑÖªº¯Êýf(x)={(a>0,ÇÒa¡Ù1)ÔÚRÉϵ¥µ÷µÝ¼õ,ÇÒ¹ØÓÚx

loga(x+1)+1,x¡Ý0µÄ·½³Ì|f(x)|=2-3Ç¡ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý½â,ÔòaµÄȡֵ·¶Î§ÊÇ . 117.(2015?È«¹ú2?ÎÄT13)ÒÑÖªº¯Êýf(x)=ax-2xµÄͼÏó¹ýµã(-1,4),Ôòa= .

x2,x¡Ü1,1

118.(2015?Õã½­?ÎÄT12)ÒÑÖªº¯Êýf(x)={Ôòf(f(-2))= -2 ,f(x)µÄ×îСֵÊÇ . 6

x+x-6,x>1,119.(2015?È«¹ú1?ÀíT13)Èôº¯Êýf(x)=xln(x+¡Ìa+x2)Ϊżº¯Êý,Ôòa= .

120.(2015?ɽ¶«?ÀíT14)ÒÑÖªº¯Êýf(x)=a+b(a>0,a¡Ù1)µÄ¶¨ÒåÓòºÍÖµÓò¶¼ÊÇ[-1,0],Ôòa+b=. 121.(2015?±±¾©?ÎÄT10)2,32,log25Èý¸öÊýÖÐ×î´óµÄÊýÊÇ.

122.(2015?°²»Õ?ÎÄT14)ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,ÈôÖ±Ïßy=2aÓ뺯Êýy=|x-a|-1µÄͼÏóÖ»ÓÐÒ»¸ö½»µã,ÔòaµÄֵΪ____________

-3

x

3

5

x

1

x3,x¡Üa,

123.(2015?ºþÄÏ?ÀíT15)ÒÑÖªº¯Êýf(x)={2Èô´æÔÚʵÊýb,ʹº¯Êýg(x)=f(x)-bÓÐÁ½¸öÁãµã,ÔòaµÄ

x,x>??.ȡֵ·¶Î§ÊÇ .

14

2x-a,x<1,

124.(2015?±±¾©?ÀíT14)É躯Êýf(x)={

4(x-a)(x-2a),x¡Ý1.¢ÙÈôa=1,Ôòf(x)µÄ×îСֵΪ;

¢ÚÈôf(x)Ç¡ÓÐ2¸öÁãµã,ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ.

125.(2015?ºþ±±?ÎÄT13)º¯Êýf(x)=2sin xsin(x+2)-xµÄÁãµã¸öÊýΪ .

ex-1,x<1,

126.(2014?È«¹ú1?ÎÄT15)É躯Êýf(x)={1ÔòʹµÃf(x)¡Ü2³ÉÁ¢µÄxµÄȡֵ·¶Î§ÊÇ .

3x,x¡Ý1,127.(2014?°²»Õ?ÎÄT14)Èôº¯Êýf(x)(x¡ÊR)ÊÇÖÜÆÚΪ4µÄÆæº¯Êý,ÇÒÔÚ[0,2]ÉϵĽâÎöʽΪ

2941x(1-x),0¡Üx¡Ü1,

f(x)={Ôòf(4)+f(6)=.

sin¦Ðx,1

¦Ð

2

128.(2014?È«¹ú2?ÎÄT15)żº¯Êýy=f(x)µÄͼÏó¹ØÓÚÖ±Ïßx=2¶Ô³Æ,f(3)=3,Ôòf(-1)= .

129.(2014?È«¹ú2?ÀíT15)ÒÑ֪żº¯Êýf(x)ÔÚ[0,+¡Þ)µ¥µ÷µÝ¼õ,f(2)=0,Èôf(x-1)>0,ÔòxµÄȡֵ·¶Î§ÊÇ .

130.(2013?È«¹ú1?ÀíT16)Èôº¯Êýf(x)=(1-x)(x+ax+b)µÄͼÏó¹ØÓÚÖ±Ïßx=-2¶Ô³Æ,Ôòf(x)µÄ×î´óֵΪ .

131.(2012?È«¹ú?ÎÄT16)É躯Êýf(x)=

(x+1)+sinx

x2+1

2

2

2

µÄ×î´óֵΪM,×îСֵΪm,ÔòM+m= .

132.(2011?ºþ±±?ÎÄT15)ÀïÊÏÕð¼¶MµÄ¼ÆË㹫ʽΪ:M=lg A-lg A0,ÆäÖÐAÊDzâÕðÒǼǼµÄµØÕðÇúÏßµÄ×î´óÕñ·ù,A0ÊÇÏàÓ¦µÄ±ê×¼µØÕðµÄÕñ·ù.¼ÙÉèÔÚÒ»´ÎµØÕðÖÐ,²âÕðÒǼǼµÄ×î´óÕñ·ùÊÇ1 000,´Ëʱ±ê×¼µØÕðµÄÕñ·ùΪ0.001,Ôò´Ë´ÎµØÕðµÄÕð¼¶Îª ¼¶;9¼¶µØÕðµÄ×î´óÕñ·ùÊÇ5¼¶µØÕð×î´óÕñ·ùµÄ ±¶.

Ê®Äê¸ß¿¼ÕæÌâ·ÖÀà»ã±à£¨2010¡ª2019£©Êýѧ

רÌâ03º¯Êý

x2-2ax+2a,x¡Ü1,1.(2019?Ìì½ò?ÀíT8)ÒÑÖªa¡ÊR,É躯Êýf(x)={Èô¹ØÓÚxµÄ²»µÈʽf(x)¡Ý0ÔÚRÉϺã³ÉÁ¢,

x-alnx,x>1.ÔòaµÄȡֵ·¶Î§Îª( )

A.[0,1] B.[0,2] C.[0,e] D.[1,e] ¡¾´ð°¸¡¿C

¡¾½âÎö¡¿(1)µ±a¡Ü1ʱ,¶þ´Îº¯ÊýµÄ¶Ô³ÆÖáΪx=a.Ðèa-2a+2a¡Ý0.a-2a¡Ü0.¡à0¡Üa¡Ü2. ¶øf(x)=x-aln x,f'(x)=1-x=

a

x-ax

2

2

2

>0 15

´ËʱҪʹf(x)=x-aln xÔÚ(1,+¡Þ)Éϵ¥µ÷µÝÔö,Ðè1-aln 1>0.ÏÔÈ»³ÉÁ¢. ¿ÉÖª0¡Üa¡Ü1.

(2)µ±a>1ʱ,x=a>1,1-2a+2a¡Ý0,ÏÔÈ»³ÉÁ¢. ´Ëʱf'(x)=

x-ax

,µ±x¡Ê(1,a),f'(x)<0,µ¥µ÷µÝ¼õ,µ±x¡Ê(a,+¡Þ),f'(x)>0,µ¥µ÷µÝÔö.

Ðèf(a)=a-aln a¡Ý0,ln a¡Ü1,a¡Üe,¿ÉÖª1

2¡Ìx,0¡Üx¡Ü1,1

2.(2019?Ìì½ò?ÎÄT8)ÒÑÖªº¯Êýf(x)={1Èô¹ØÓÚxµÄ·½³Ìf(x)=-4x+a(a¡ÊR)Ç¡ÓÐÁ½¸ö»¥ÒìµÄʵ

,x>1.

x

Êý½â,ÔòaµÄȡֵ·¶Î§Îª( ) A.C.

59

, 44

59

B.

59445944

,,

¡È{1}

,¡È{1} D.44

¡¾´ð°¸¡¿D

¡¾½âÎö¡¿µ±Ö±Ïß¹ýµãA(1,1)ʱ,ÓÐ1=-4+a,µÃa=4. µ±Ö±Ïß¹ýµãB(1,2)ʱ,ÓÐ2=-+a,a=.

4

4

1

91

5

¹Êµ±¡Üa¡Üʱ,ÓÐÁ½¸öÏàÒìµã.

4

4

59

µ±x>1ʱ,f'(x0)=-2=-,x0=2.

x0

4

11

´ËʱÇеãΪ2,2,´Ëʱa=1.¹ÊÑ¡D.

1

x,x<0,3.(2019?Õã½­?T9)Éèa,b¡ÊR,º¯Êýf(x)={131Èôº¯Êýy=f(x)-ax-bÇ¡ÓÐ3¸öÁãµã,

x-(a+1)x2+ax,x¡Ý0.

3

2

Ôò( )

A.a<-1,b<0 B.a<-1,b>0 C.a>-1,b<0 D.a>-1,b>0 ¡¾´ð°¸¡¿C

¡¾½âÎö¡¿µ±x<0ʱ,ÓÉx=ax+b,µÃx=1a,×î¶àÒ»¸öÁãµãÈ¡¾öÓÚx=1aÓë0µÄ´óС,ËùÒԹؼüÑо¿µ±x¡Ý0ʱ,

--b

b

16