f(f(15))µÄֵΪ .
94.(2018?È«¹ú1?ÎÄT13)ÒÑÖªº¯Êýf(x)=log2(x+a),Èôf(3)=1,Ôòa= .
95.(2019?Õã½?T16)ÒÑÖªa¡ÊR,º¯Êýf(x)=ax-x.Èô´æÔÚt¡ÊR,ʹµÃ|f(t+2)-f(t)|¡Ü3,ÔòʵÊýaµÄ×î´óÖµÊÇ_______________
96.(2019?½ËÕ?T4)º¯Êýy= ¡Ì7+6x-x2µÄ¶¨ÒåÓòÊÇ . 97.(2018?½ËÕ?T5)º¯Êýf(x)=¡Ìlog2x-1µÄ¶¨ÒåÓòΪ .
98.(2018?±±¾©?ÀíT13)ÄÜ˵Ã÷¡°Èôf(x)>f(0)¶ÔÈÎÒâµÄx¡Ê(0,2]¶¼³ÉÁ¢,Ôòf(x)ÔÚ[0,2]ÉÏÊÇÔöº¯Êý¡±Îª¼ÙÃüÌâµÄÒ»¸öº¯ÊýÊÇ_____________
99.(2018?ÉϺ£?T11)ÒÑÖª³£Êýa>0,º¯Êýf(x)=
µÄͼÏñ¾¹ýµãP(p,),Q(q,-).Èô2=36pq,Ôòa=. 2x+ax55
2x
6
1
p+q
3
2
2
100.(2018?ÉϺ£?T4)Éè³£Êýa¡ÊR,º¯Êýf(x)=log2(x+a).Èôf(x)µÄ·´º¯ÊýµÄͼÏñ¾¹ýµã(3,1),Ôòa= . 101.(2018?ÉϺ£?T7)ÒÑÖª¦Á¡Ê{-2,-1,-,,1,2,3},ÈôÃݺ¯Êýf(x)=xÎªÆæº¯Êý,ÇÒÔÚ(0,+¡Þ)Éϵݼõ,Ôò
2
21
1
¦Á
¦Á= .
x2+2ax+a,x¡Ü0,
102.(2018?Ìì½ò?ÀíT14)ÒÑÖªa>0,º¯Êýf(x)={2Èô¹ØÓÚxµÄ·½³Ìf(x)=axÇ¡ÓÐ2¸ö»¥Òì
-x+2ax-2a,x>0.µÄʵÊý½â,ÔòaµÄȡֵ·¶Î§ÊÇ .
x-4,x¡Ý¦Ë,
103.(2018?Õã½?T15)ÒÑÖª¦Ë¡ÊR,º¯Êýf(x)={2µ±¦Ë=2ʱ,²»µÈʽf(x)<0µÄ½â¼¯ÊÇ .Èô
x-4x+3,x?.º¯Êýf(x)Ç¡ÓÐ2¸öÁãµã,Ôò¦ËµÄȡֵ·¶Î§ÊÇ .
104.(2018?ÉϺ£?T19)ijȺÌåµÄÈ˾ùͨÇÚʱ¼ä,ÊÇÖ¸µ¥ÈÕÄÚ¸ÃȺÌåÖгÉÔ±´Ó¾ÓסµØµ½¹¤×÷µØµÄƽ¾ùÓÃʱ.ijµØÉϰà×åSÖеijÉÔ±½öÒÔ×Լݻò¹«½»·½Ê½Í¨ÇÚ.·ÖÎöÏÔʾ:µ±SÖÐx%(0 1800¾ùͨÇÚʱ¼äΪf(x)={(µ¥Î»:·ÖÖÓ),¶ø¹«½»ÈºÌåµÄÈ˾ùͨÇÚʱ¼ä²»ÊÜxÓ°Ïì,ºã2x+x-90,30?<100Ϊ40·ÖÖÓ.ÊÔ¸ù¾ÝÉÏÊö·ÖÎö½á¹û»Ø´ðÏÂÁÐÎÊÌâ: (1)µ±xÔÚʲô·¶Î§ÄÚʱ,¹«½»ÈºÌåµÄÈ˾ùͨÇÚʱ¼äÉÙÓÚ×Ô¼ÝȺÌåµÄÈ˾ùͨÇÚʱ¼ä? (2)Çó¸ÃµØÉϰà×åSµÄÈ˾ùͨÇÚʱ¼äg(x)µÄ±í´ïʽ;ÌÖÂÛg(x)µÄµ¥µ÷ÐÔ,²¢ËµÃ÷Æäʵ¼ÊÒâÒå. x2+2x+a-2,x¡Ü0, 105.(2018?Ìì½ò?ÎÄT14)ÒÑÖªa¡ÊR,º¯Êýf(x)={2Èô¶ÔÈÎÒâx¡Ê[-3,+¡Þ),f(x)¡Ü|x|ºã³É -x+2x-2a,x>0.Á¢,ÔòaµÄȡֵ·¶Î§ÊÇ. 106.(2017?È«¹ú2?ÎÄT14)ÒÑÖªº¯Êýf(x)ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý,µ±x¡Ê(-¡Þ,0)ʱ,f(x)=2x+x,Ôòf(2)= . 107.(2017?Õã½?T17)ÒÑÖªa¡ÊR,º¯Êýf(x)=|x+x-a|+aÔÚÇø¼ä[1,4]ÉϵÄ×î´óÖµÊÇ5,ÔòaµÄȡֵ·¶Î§ÊÇ 13 4 3 2 x+1,x¡Ü0,1 108.(2017?È«¹ú3?ÀíT15ÎÄT16)É躯Êýf(x)={xÔòÂú×ãf(x)+f(x-)>1µÄxµÄȡֵ·¶Î§ÊÇ 22,x>0,109.(2017?ɽ¶«?ÎÄT14)ÒÑÖªf(x)ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý,ÇÒf(x+4)=f(x-2).Èôµ±x¡Ê[-3,0]ʱ,f(x)=6,Ôòf(919)= . 110.(2016?½ËÕ?T5)º¯Êýy=¡Ì3-2x-x2µÄ¶¨ÒåÓòÊÇ . 111.(2016?±±¾©?ÎÄT10)º¯Êýf(x)=x-1 (x¡Ý2)µÄ×î´óֵΪ . 112.(2016?È«¹ú3?ÀíT15)ÒÑÖªf(x)Ϊżº¯Êý,µ±x<0ʱ,f(x)=ln(-x)+3x,ÔòÇúÏßy=f(x)ÔÚµã(1,-3)´¦µÄÇÐÏß·½³ÌÊÇ . 113.(2016?Ìì½ò?ÀíT13)ÒÑÖªf(x)ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý,ÇÒÔÚÇø¼ä(-¡Þ,0)Éϵ¥µ÷µÝÔö.ÈôʵÊýaÂú×ãf(2 |a-1| -x x )>f(-¡Ì2),ÔòaµÄȡֵ·¶Î§ÊÇ . x 114.(2016?ËÄ´¨?ÎÄT14)Èôº¯Êýf(x)ÊǶ¨ÒåÔÚRÉϵÄÖÜÆÚΪ2µÄÆæº¯Êý,µ±0 2 |x|,x¡Üm, 115.(2016?ɽ¶«?ÎÄT15)ÒÑÖªº¯Êýf(x)={2ÆäÖÐm>0.Èô´æÔÚʵÊýb,ʹµÃ¹ØÓÚxµÄ·½³Ì x-2mx+4m,x>??,f(x)=bÓÐÈý¸ö²»Í¬µÄ¸ù,ÔòmµÄȡֵ·¶Î§ÊÇ . x2+(4a-3)x+3a,x<0, 116.(2016?Ìì½ò?ÎÄT14)ÒÑÖªº¯Êýf(x)={(a>0,ÇÒa¡Ù1)ÔÚRÉϵ¥µ÷µÝ¼õ,ÇÒ¹ØÓÚx loga(x+1)+1,x¡Ý0µÄ·½³Ì|f(x)|=2-3Ç¡ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý½â,ÔòaµÄȡֵ·¶Î§ÊÇ . 117.(2015?È«¹ú2?ÎÄT13)ÒÑÖªº¯Êýf(x)=ax-2xµÄͼÏó¹ýµã(-1,4),Ôòa= . x2,x¡Ü1,1 118.(2015?Õã½?ÎÄT12)ÒÑÖªº¯Êýf(x)={Ôòf(f(-2))= -2 ,f(x)µÄ×îСֵÊÇ . 6 x+x-6,x>1,119.(2015?È«¹ú1?ÀíT13)Èôº¯Êýf(x)=xln(x+¡Ìa+x2)Ϊżº¯Êý,Ôòa= . 120.(2015?ɽ¶«?ÀíT14)ÒÑÖªº¯Êýf(x)=a+b(a>0,a¡Ù1)µÄ¶¨ÒåÓòºÍÖµÓò¶¼ÊÇ[-1,0],Ôòa+b=. 121.(2015?±±¾©?ÎÄT10)2,32,log25Èý¸öÊýÖÐ×î´óµÄÊýÊÇ. 122.(2015?°²»Õ?ÎÄT14)ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,ÈôÖ±Ïßy=2aÓ뺯Êýy=|x-a|-1µÄͼÏóÖ»ÓÐÒ»¸ö½»µã,ÔòaµÄֵΪ____________ -3 x 3 5 x 1 x3,x¡Üa, 123.(2015?ºþÄÏ?ÀíT15)ÒÑÖªº¯Êýf(x)={2Èô´æÔÚʵÊýb,ʹº¯Êýg(x)=f(x)-bÓÐÁ½¸öÁãµã,ÔòaµÄ x,x>??.ȡֵ·¶Î§ÊÇ . 14 2x-a,x<1, 124.(2015?±±¾©?ÀíT14)É躯Êýf(x)={ 4(x-a)(x-2a),x¡Ý1.¢ÙÈôa=1,Ôòf(x)µÄ×îСֵΪ; ¢ÚÈôf(x)Ç¡ÓÐ2¸öÁãµã,ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ. 125.(2015?ºþ±±?ÎÄT13)º¯Êýf(x)=2sin xsin(x+2)-xµÄÁãµã¸öÊýΪ . ex-1,x<1, 126.(2014?È«¹ú1?ÎÄT15)É躯Êýf(x)={1ÔòʹµÃf(x)¡Ü2³ÉÁ¢µÄxµÄȡֵ·¶Î§ÊÇ . 3x,x¡Ý1,127.(2014?°²»Õ?ÎÄT14)Èôº¯Êýf(x)(x¡ÊR)ÊÇÖÜÆÚΪ4µÄÆæº¯Êý,ÇÒÔÚ[0,2]ÉϵĽâÎöʽΪ 2941x(1-x),0¡Üx¡Ü1, f(x)={Ôòf(4)+f(6)=. sin¦Ðx,1?¡Ü2, ¦Ð 2 128.(2014?È«¹ú2?ÎÄT15)żº¯Êýy=f(x)µÄͼÏó¹ØÓÚÖ±Ïßx=2¶Ô³Æ,f(3)=3,Ôòf(-1)= . 129.(2014?È«¹ú2?ÀíT15)ÒÑ֪żº¯Êýf(x)ÔÚ[0,+¡Þ)µ¥µ÷µÝ¼õ,f(2)=0,Èôf(x-1)>0,ÔòxµÄȡֵ·¶Î§ÊÇ . 130.(2013?È«¹ú1?ÀíT16)Èôº¯Êýf(x)=(1-x)(x+ax+b)µÄͼÏó¹ØÓÚÖ±Ïßx=-2¶Ô³Æ,Ôòf(x)µÄ×î´óֵΪ . 131.(2012?È«¹ú?ÎÄT16)É躯Êýf(x)= (x+1)+sinx x2+1 2 2 2 µÄ×î´óֵΪM,×îСֵΪm,ÔòM+m= . 132.(2011?ºþ±±?ÎÄT15)ÀïÊÏÕð¼¶MµÄ¼ÆË㹫ʽΪ:M=lg A-lg A0,ÆäÖÐAÊDzâÕðÒǼǼµÄµØÕðÇúÏßµÄ×î´óÕñ·ù,A0ÊÇÏàÓ¦µÄ±ê×¼µØÕðµÄÕñ·ù.¼ÙÉèÔÚÒ»´ÎµØÕðÖÐ,²âÕðÒǼǼµÄ×î´óÕñ·ùÊÇ1 000,´Ëʱ±ê×¼µØÕðµÄÕñ·ùΪ0.001,Ôò´Ë´ÎµØÕðµÄÕð¼¶Îª ¼¶;9¼¶µØÕðµÄ×î´óÕñ·ùÊÇ5¼¶µØÕð×î´óÕñ·ùµÄ ±¶. Ê®Äê¸ß¿¼ÕæÌâ·ÖÀà»ã±à£¨2010¡ª2019£©Êýѧ רÌâ03º¯Êý x2-2ax+2a,x¡Ü1,1.(2019?Ìì½ò?ÀíT8)ÒÑÖªa¡ÊR,É躯Êýf(x)={Èô¹ØÓÚxµÄ²»µÈʽf(x)¡Ý0ÔÚRÉϺã³ÉÁ¢, x-alnx,x>1.ÔòaµÄȡֵ·¶Î§Îª( ) A.[0,1] B.[0,2] C.[0,e] D.[1,e] ¡¾´ð°¸¡¿C ¡¾½âÎö¡¿(1)µ±a¡Ü1ʱ,¶þ´Îº¯ÊýµÄ¶Ô³ÆÖáΪx=a.Ðèa-2a+2a¡Ý0.a-2a¡Ü0.¡à0¡Üa¡Ü2. ¶øf(x)=x-aln x,f'(x)=1-x= a x-ax 2 2 2 >0 15 ´ËʱҪʹf(x)=x-aln xÔÚ(1,+¡Þ)Éϵ¥µ÷µÝÔö,Ðè1-aln 1>0.ÏÔÈ»³ÉÁ¢. ¿ÉÖª0¡Üa¡Ü1. (2)µ±a>1ʱ,x=a>1,1-2a+2a¡Ý0,ÏÔÈ»³ÉÁ¢. ´Ëʱf'(x)= x-ax ,µ±x¡Ê(1,a),f'(x)<0,µ¥µ÷µÝ¼õ,µ±x¡Ê(a,+¡Þ),f'(x)>0,µ¥µ÷µÝÔö. Ðèf(a)=a-aln a¡Ý0,ln a¡Ü1,a¡Üe,¿ÉÖª1 2¡Ìx,0¡Üx¡Ü1,1 2.(2019?Ìì½ò?ÎÄT8)ÒÑÖªº¯Êýf(x)={1Èô¹ØÓÚxµÄ·½³Ìf(x)=-4x+a(a¡ÊR)Ç¡ÓÐÁ½¸ö»¥ÒìµÄʵ ,x>1. x Êý½â,ÔòaµÄȡֵ·¶Î§Îª( ) A.C. 59 , 44 59 B. 59445944 ,, ¡È{1} ,¡È{1} D.44 ¡¾´ð°¸¡¿D ¡¾½âÎö¡¿µ±Ö±Ïß¹ýµãA(1,1)ʱ,ÓÐ1=-4+a,µÃa=4. µ±Ö±Ïß¹ýµãB(1,2)ʱ,ÓÐ2=-+a,a=. 4 4 1 91 5 ¹Êµ±¡Üa¡Üʱ,ÓÐÁ½¸öÏàÒìµã. 4 4 59 µ±x>1ʱ,f'(x0)=-2=-,x0=2. x0 4 11 ´ËʱÇеãΪ2,2,´Ëʱa=1.¹ÊÑ¡D. 1 x,x<0,3.(2019?Õã½?T9)Éèa,b¡ÊR,º¯Êýf(x)={131Èôº¯Êýy=f(x)-ax-bÇ¡ÓÐ3¸öÁãµã, x-(a+1)x2+ax,x¡Ý0. 3 2 Ôò( ) A.a<-1,b<0 B.a<-1,b>0 C.a>-1,b<0 D.a>-1,b>0 ¡¾´ð°¸¡¿C ¡¾½âÎö¡¿µ±x<0ʱ,ÓÉx=ax+b,µÃx=1a,×î¶àÒ»¸öÁãµãÈ¡¾öÓÚx=1aÓë0µÄ´óС,ËùÒԹؼüÑо¿µ±x¡Ý0ʱ, --b b 16