部分引脚说明:
1. 时钟电路引脚XTAL1 和XTAL2:
XTAL2(18 脚):接外部晶体和微调电容的一端;在8051 片内它是振荡电路反相放大器的输出端,振荡电路的频率就是晶体固有频率。若需采用外部时钟电路时,该引脚输入外部时钟脉冲。
要检查8051/8031 的振荡电路是否正常工作,可用示波器查看XTAL2 端是否有脉冲信号输出。
XTAL1(19 脚):接外部晶体和微调电容的另一端;在片内它是振荡电路反相放大器的输入端。在采用外部时钟时,该引脚必须接地。
2. 控制信号引脚RST,ALE,PSEN 和EA:
RST/VPD(9 脚):RST 是复位信号输入端,高电平有效。当此输入端保持备用电源的输入端。当主电源Vcc 发生故障,降低到低电平规定值时,将+5V 电源自动两个机器周期(24个时钟振荡周期)的高电平时,就可以完成复位操作。RST 引脚的第二功能是VPD,即接入RST 端,为RAM 提供备用电源,以保证存储在RAM 中的信息不丢失,从而合复位后能继续正常运行。
ALE/PROG(30 脚):地址锁存允许信号端。当8051 上电正常工作后,ALE 引脚不断向外输出正脉冲信号,此频率为振荡器频率fOSC 的1/6。CPU 访问片外存储器时,ALE 输出信号作为锁存低8 位地址的控制信号。
平时不访问片外存储器时,ALE 端也以振荡频率的1/6 固定输出正脉冲,因而ALE 信号可以用作对外输出时钟或定时信号。如果想确定8051/8031 芯片的好坏,可用示波器查看ALE端是否有脉冲信号输出。如有脉冲信号输出,则8051/8031 基本上是好的。
ALE 端的负载驱动能力为8 个LS 型TTL(低功耗甚高速TTL)负载。
此引脚的第二功能PROG 在对片内带有4KB EPROM 的8751 编程写入(固化程序)时,作为编程脉冲输入端。
PSEN(29 脚):程序存储允许输出信号端。在访问片外程序存储器时,此端定时输出负脉冲作为读片外存储器的选通信号。此引肢接EPROM 的OE 端(见后面几章任何一个小系统硬件图)。PSEN 端有效,即允许读出EPROM/ROM 中的指令码。PSEN 端同样可驱动8 个LS 型TTL 负载。要检查一个8051/8031 小系统上电后CPU 能否正常到EPROM/ROM 中读取指令码,也可用示波器看PSEN 端有无脉冲输出。如有则说明基本上工作正常。
EA/Vpp(31 脚):外部程序存储器地址允许输入端/固化编程电压输入端。当EA 引脚接高电平时,CPU只访问片内EPROM/ROM并执行内部程序存储器中的指令,但当PC(程序计数器)的值超过0FFFH(对8751/8051 为4K)时,将自动转去执行片外程序存储器内的程序。当输入信号EA 引脚接低电平(接地)时,CPU 只访问外部EPROM/ROM 并执行外部程序存储器中的指令,而不管是否有片内程序存储器。对于无片内ROM 的8031 或8032,需外扩EPROM,此时必须将EA 引脚接地。此引脚的第二功能是Vpp 是对8751 片内EPROM固化编程时,作为施加较高编程电压(一般12V~21V)的输入端。
3. 输入/输出端口P0/P1/P2/P3:
P0口(P0.0~P0.7,39~32 脚):P0口是一个漏极开路的8 位准双向I/O口。作为漏极开路的输出端口,每位能驱动8 个LS 型TTL 负载。当P0 口作为输入口使用时,应先向口锁存器(地址80H)写入全1,此时P0 口的全部引脚浮空,可作为高阻抗输入。作输入口使用时要先写1,这就是准双向口的含义。在CPU 访问
5
片外存储器时,P0口分时提供低8 位地址和8 位数据的复用总线。在此期间,P0口内部上拉电阻有效。
P1口(P1.0~P1.7,1~8 脚):P1口是一个带内部上拉电阻的8 位准双向I/O口。P1口每位能驱动4 个LS 型TTL 负载。在P1口作为输入口使用时,应先向P1口锁存地址(90H)写入全1,此时P1口引脚由内部上拉电阻拉成高电平。
P2口(P2.0~P2.7,21~28 脚):P2口是一个带内部上拉电阻的8 位准双向I/O口。P口每位能驱动4个LS 型TTL 负载。在访问片外EPROM/RAM 时,它输出高8 位地址。
P3口(P3.0~P3.7,10~17 脚):P3口是一个带内部上拉电阻的8 位准双向I/O口。P3口每位能驱动4个LS型TTL负载。P3口与其它I/O 端口有很大的区别,它的每个引脚都有第二功能,如下:
P3.0:(RXD)串行数据接收。 P3.1:(RXD)串行数据发送。 P3.2:(INT0#)外部中断0输入。 P3.3:(INT1#)外部中断1输入。
P3.4:(T0)定时/计数器0的外部计数输入。 P3.5:(T1)定时/计数器1的外部计数输入。 P3.6:(WR#)外部数据存储器写选通。 P3.7:(RD#)外部数据存储器读选通。
2.1.3 STC89C52单片机的中断系统
STC89C52系列单片机的中断系统有5个中断源,2个优先级,可以实现二级中断服务嵌套。由片内特殊功能寄存器中的中断允许寄存器IE控制CPU是否响应中断请求;由中断优先级寄存器IP安排各中断源的优先级;同一优先级内各中断同时提出中断请求时,由内部的查询逻辑确定其响应次序。
2.1.4 STC89C52单片机的定时/计数器
在单片机应用系统中,常常会有定时控制需求,如定时输出、定时检测、定时扫描等;也经常要对外部事件进行计数。89C52单片机内集成有两个可编程的定时/计数器:T0和T1,它们既可以工作于定时模式,也可以工作于外部事件计数模式,此外,T1还可以作为串行口的波特率发生器。
2.2数码管模块设计 2.2.1 数码管原理介绍
数码管按段数分为七段数码管和八段数码管,八段数码管比七段数码管多一个发光二极管单元(多一个小数点显示);按能显示多少个“8”可分为1位、2位、4位等等数码管;
按发光二极管单元连接方式分为共阳极数码管和共阴极数码管。共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管,共阳数码管在应用时应将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮,当某一字段的阴极为高电平时,相应字段就不亮。共阴数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管,共阴数码管在应用时应将公共极COM接到地线GND上,当某一字段发光二极管的阳
6
极为高电平时,相应字段就点亮,当某一字段的阳极为低电平时,相应字段就不亮。
数码管要正常显示,就要用驱动电路来驱动数码管的各个段码,从而显示出我们要的数字,因此根据数码管的驱动方式的不同,可以分为静态式和动态式两类。
静态驱动也称直流驱动。静态驱动是指每个数码管的每一个段码都由一个单片机的I/O端口进行驱动,或者使用如BCD码二-十进制译码器译码进行驱动。静态驱动的优点是编程简单,显示亮度高,缺点是占用I/O端口多,如驱动5个数码管静态显示则需要5×8=40根I/O端口来驱动,要知道一个89S51单片机可用的I/O端口才32个呢:),实际应用时必须增加译码驱动器进行驱动,增加了硬件电路的复杂性。
数码管动态显示接口是单片机中应用最为广泛的一种显示方式之一,动态驱动是将所有数码管的8个显示笔划\的同名端连在一起,另外为每个数码管的公共极COM增加位选通控制电路,位选通由各自独立的I/O线控制,当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是那个数码管会显示出字形,取决于单片机对位选通COM端电路的控制,所以我们只要将需要显示的数码管的选通控制打开,该位就显示出字形,没有选通的数码管就不会亮。通过分时轮流控制各个数码管的的COM端,就使各个数码管轮流受控显示,这就是动态驱动。在轮流显示过程中,每位数码管的点亮时间为1~2ms,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O端口,而且功耗更低。
图2-4 数码管内部结构图
2.2.1 数码管电路设计
如下图所示为一位共阳数码管的硬件电路连接图,由于数码管内部实际为8个LED灯,如果把LED的阴级直接单片机的IO的口,会使LED通过的电流过大从而把数码管烧毁,因此在设计的时候在LED的阴级和单片机的IO之间加上了限流电阻从而起到限流作用。根据经验,这里选取了1K电阻。程序编写的时候我们预先根据要显示的字符,编写了个对应要显示的数组,这样可以使程序更加简化。
7
图2-5共阳数码管硬件电路连接图
2.3键盘模块设计
2.3.1矩阵键盘原理介绍
矩阵式键盘模式以N个端口连接控制N*N个按键,实时在LED数码管上显示按键信息。显示按键信息,省下了很多的I/O端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。并且在实际应用中经常要用到输入数字、字母、符号等操作功能,如电子密码锁、电话机键盘、计算器按键等,至少都需要12到16个按键。矩阵式键盘简介:矩阵式键盘又称行列键盘,它是用N条I/O线作为行线,N条I/O线作为列线组成的键盘。在行线和列线的每个交叉点上设置一个按键。这样键盘上按键的个数就为N*N个。这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。
最常见的键盘布局如图1所示。一般由16个按键组成,在单片机中正好可以用一个P口实现16个按键功能,这也是在单片机系统中最常用的形式,本设计就采用这个键盘模式。
图2-6键盘布局
矩阵式键盘提高效率进行按键操作管理有效方法,它可以提高系统准确性,有利于资源的节约,降低对操作者本身素质的要求。
2.3.2矩阵键盘电路设计
图2-7矩阵键盘电路图
8